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Abstract—In the last five years, edge computing has attracted
tremendous attention from industry and academia due to its
promise to reduce latency, save bandwidth, improve availability,
and protect data privacy to keep data secure. At the same time,
we have witnessed the proliferation of Al algorithms and models
which accelerate the successful deployment of intelligence mainly
in cloud services. These two trends, combined together, have
created a new horizon: Edge Intelligence (EI). The development
of EI requires much attention from both the computer systems
research community and the AI community to meet these
demands.

However, existing computing techniques used in the cloud are
not applicable to edge computing directly due to the diversity
of computing sources and the distribution of data sources. We
envision that there missing a framework that can be rapidly
deployed on edge and enable edge AI capabilities. To address
this challenge, in this paper we first present the definition and a
systematic review of EI. Then, we introduce an Open Framework
for Edge Intelligence (OpenEIl), which is a lightweight software
platform to equip edges with intelligent processing and data
sharing capability. We analyze four fundamental EI techniques
which are used to build OpenEI and identify several open
problems based on potential research directions. Finally, four
typical application scenarios enabled by OpenEI are presented.

Index Terms—Edge intelligence, edge computing, deep learn-
ing, edge data analysis, cloud-edge collaboration

I. INTRODUCTION

With the burgeoning growth of the Internet of Everything,
the amount of data generated by edge increases dramatically,
resulting in higher network bandwidth requirements. Mean-
while the emergence of novel applications calls for lower
latency of the network. Based on these two main requirements,
EC arises, which refers to processing the data at the edge
of the network. Edge Computing (EC) guarantees quality of
service when dealing with a massive amount of data for cloud
computing [1]. Cisco Global Cloud Index [2] estimates that
there will be 10 times more useful data being created (85 ZB)
than being stored or used (7.2 ZB) by 2021, and EC is a
potential technology to help bridge this gap.

At the same time, Artificial Intelligence (AI) applications
based on machine learning (especially deep learning algo-
rithms) are fueled by advances in models, processing power,
and big data. Nowadays, applications are built as a central
attribute, and users are beginning to expect near-human in-
teraction with the appliances they use. For example, since
the sensors and cameras mounted on an autonomous vehicle
generate about one gigabyte of data per second [3], it is hard
to upload the data and get instructions from the cloud in real-
time. As for mobile phone applications, such as those related
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Fig. 1. Motivation of Edge Intelligence.

with face recognition and speech translation, they have high
requirements for running either online or offline.

Pushed by EC techniques and pulled by AI applications,
Edge Intelligence (EI) has been pushed to the horizon. As
is shown in Figure 1, the development of EC techniques,
including powerful IoT data, edge devices, storage, wireless
communication, and security and privacy make it possible to
run Al algorithms on the edge. Al applications, including
connected health, connected vehicles, smart manufacturing,
smart home, and video analytics call for running on the edge.
In the EI scenario, advanced Al models based on machine
learning algorithms will be optimized to run on the edge. The
edge will be capable of dealing with video frames, natural
speech information, time-series data and unstructured data
generated by cameras, microphones, and other sensors without
uploading data to the cloud and waiting for the response.

Migrating the functions from the cloud to the edge is
highly regarded by industry and academy. Forbes listed the
convergence of IoT and Al on the edge as one of five Al
trends in 2019 [4]. Forbes believes that most of the models
trained in the public cloud will be deployed on the edge and
edge devices will be equipped with special Al chips based on
FPGAs and ASICs. Microsoft provides Azure IoT Edge [5], a
fully managed service, to deliver cloud intelligence locally by
deploying and running AI algorithms and services on cross-
platform edge devices. Similar to Azure IoT Edge, Cloud IoT
Edge [6] extends Google Cloud’s data processing and machine
learning to billions of edge devices by taking advantage of
Google Al products, such as TensorFlow Lite and Edge TPU.
AWS ToT Greengrass [7] has been published to make it easy to



perform machine learning inference locally on devices, using
models that have been trained and optimized in the cloud.

However, several challenges when offloading state-of-the-art
Al techniques on the edge directly, including

o Computing power limitation. The edge is usually
resource-constrained compared to the cloud data center,
which is not a good fit for executing DNN represented Al
algorithms since DNN requires a large footprint on both
storage (as big as S00MB for VGG-16 Model [8]) and
computing power (as high as 15300 MMA for executing
VGG-16 model [9]).

e Data sharing and collaborating. The data on the cloud
data center is easy to be batch processed and managed,
which is beneficial in terms of the concentration of
data. However, the temporal-spatial diversity of edge data
creates obstacles for the data sharing and collaborating.

o Mismatch between edge platform and Al algorithms. The
computing power on the cloud is relatively consistent
while edges have diverse computing powers. Meanwhile,
different Al algorithms have different computing power
requirements. Therefore, it is a big challenge to match an
existing algorithm with the edge platform.

To address these challenges, this paper proposes an Open
Framework for Edge Intelligence, OpenEl, which is a
lightweight software platform to equip the edge with intel-
ligent processing and data sharing capability. To solve the
problems that the EC power limitation brings, OpenEI contains
a lightweight deep learning package (package manager) which
is designed for the resource constrained edge and includes
optimized Al models. In order to handle the data sharing
problem, libei is designed to provide a uniform RESTful
API. By calling the API, developers are able to access all data,
algorithms, and computing resources. The heterogeneity of the
architecture is transparent to the user, which makes it possible
to share data and collaborate between edges. In order to solve
the mismatch problem, OpenEl designs a model selector to
find the most suitable models for a specific targeting edge
platform. The model selector refers to the computing power
(such as memory and energy) that the algorithm requires and
the edge platform provides. The contributions of this paper
are as follows:

e A formal definition and a systematic
of EI are presented. Each EI algorithm
is defined as a four-element tuple ALEM
< Accuracy, Latency, Energy, Memory footprint >.

e OpenEl, an Open Framework for Edge Intelligence, is
proposed to address the challenges of EI, including
computing power limitations, data sharing and collabo-
rating, and the mismatch between edge platform and Al
algorithms.

o Four key enabling techniques of EI and their potential
directions are depicted. Several open problems are also
identified in the paper.

analysis

The remainder of this paper is organized into six sections.
In Section II, we define EI and list the advantages of EI. We

present OpenEl to support EI in Section III. Four key tech-
niques that enable EI are explained in Section IV, including
algorithms, packages, running environments, and hardware. EI
is designed to support many potential applications, such as live
video analytic for public safety, connected and autonomous
driving, smart home, and smart and connected health, which
are illustrated in Section V. Finally, Section VI concludes the
paper.

II. THE DEFINITION OF EDGE INTELLIGENCE
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Fig. 2. Edge Intelligence.

A. Motivation

The development of EI comes from two aspects. On the
one hand, the burgeoning growth of the IoT results in a
dramatically increasing amount of IoT data, which needs to be
processed on the edge. In this paper, we define IoT as the bil-
lions of physical devices around the world that are securely
connected to the Internet, individually or collaboratively,
collecting and sharing data, applying intelligence to actuate
the physical world in a safe way. On the other hand, the
emergence of Al applications calls for a higher requirement
for real-time performance, such as autonomous driving, real-
time translation, and video surveillance. EI is presented to deal
with this massive edge data in an intelligent manner.

B. Definition

Currently, many studies related to EI are beginning to
emerge. International Electrotechnical Commission (IEC) de-
fines EI as the process of when the data is acquired, stored and
processed with machine learning algorithms at the network
edge. It believes that several information technology and
operational technology industries are moving closer to the
edge of the network so that aspects such as real-time networks,
security capabilities, and personalized/customized connectivity
are addressed [10]. In 2018, [11] discussed the challenges
and the opportunities that EI created by presenting a use-case
showing that the careful design of the convolutional neural
networks (CNN) for object detection would lead to real-time
performance on embedded edge devices. [12] enabled EI for



activity recognition in smart homes from multiple perspectives,
including architecture, algorithm design and system implemen-
tation.

In this paper, we define EI as the capability to enable
edges to execute artificial intelligence algorithms. The
diversity of edge hardware results in different in Al models
or algorithms they carry; that is, edges have different EI
capabilities. Here the capability is defined as a four-element
tuple < Accuracy, Latency, Energy, Memory footprint >
which is abbreviated as ALEM.

Accuracy is the internal attribute of Al algorithms. In
practice, the definition of Accuracy depends on specific ap-
plications; for example, it is measured by the mean average
precision (mAP) in object detection tasks and measured by the
BLEU score metric in machine translation tasks. To execute
the Al tasks on the edge, some algorithms are optimized by
compressing the size of the model, quantizing the weight
and other methods that will decrease accuracy. Better EI
capability means that the edge is able to employ the algorithms
with greater Accuracy. Latency represents the inference time
when running the trained model on the edge. To measure the
Latency, we calculate the average latency of multiple inference
tasks. When running the same models, the Latency measures
the level of performance of the edge. Energy refers to the
increased power consumption of the hardware when executing
the inference task. Memory footprint is the memory usage
when running the Al model. Energy and Memory footprint
indicate the computing resource requirement of the algorithm
for the edge.

EI involves much knowledge and technology, such as Al
algorithm design, software and system, computing architec-
ture, sensor network and so on. Figure 2 shows the overview
of EL. To support EI, many techniques have been developed,
called EI techniques, which include algorithms, software, and
hardware. There is a one-to-one correspondence between the
cloud and the single edge. From algorithms perspective, the
cloud data centers train powerful models and the edge does
the inference. With the development of EI, the edge will
also undertake some local training tasks. From the software
perspective, the cloud runs the cluster operating system and
deep learning framework, such as TensorFlow [13] and MXNet
[14]. On the edge, both the embedded operating system and the
stand-alone operating system are widely used. The lightweight
deep learning package is used to speed up the execution,
such as TensorFlow Lite [15] and CoreML [16]. From the
hardware perspective, cloud data centers are deployed on high-
performance platforms, such as GPU, CPU, FPGA, and ASIC
clusters while the hardware of the edge are heterogeneous
edges, such as edge server, mobile phone, Raspberry Pi,
laptop, etc.

C. Collaboration

As shown in Figure 2, there are two types of collaboration
for EI: cloud-edge and edge-edge collaboration. In the cloud-
edge scenario, the models are usually trained on the cloud and
then downloaded to the edge which executes the inference

task. Sometimes, edges will retrain the model by transfer
learning based on the data they generated. The retrained
models will be uploaded to the cloud and combined into a
general and global model. In addition, researchers have also
focused on the distributed deep learning models over the cloud
and edge. For example, DDNN [17] is a distributed deep neural
network architecture across the cloud and edge.

Edge-edge collaboration has two aspects. First, multiple
edges work collaboratively to accomplish a compute-intensive
task. For example, several edges will be distributed when train-
ing a huge deep learning network. The task will be allocated
according to the computing power. Second, multiple edges
work together to accomplish a task with different divisions
based on different environments. For example, in smart home
environments, a smartphone predicts when a user is approach-
ing home, triggering and the smart thermostat will be triggered
to set the suitable temperature for the users. Individually, every
task is particularly difficult, but the coordination within the
edge makes it easy.
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Fig. 3. Dataflow of Edge Intelligence.

D. Dataflow of EI

As is shown in Figure 3, the data generated by the edge
comes from different sources, such as cars, drones, smart
homes, etc. and has three data flows:

« First is uploading the data to the cloud and training based
on the multi-source data. When the model training is
completed, the cloud will do the inference based on the
edge data and send the result to the edge. This dataflow
is widely used in traditional machine intelligence.

e Second is executing the inference on the edge directly.
The data generated by the edge will be the input of the
edge model downloaded from the cloud. The edge will
do the inference based on the input and output the results.
This is the current EI dataflow.

o Third is training on the edge locally. The data will be
used to retrain the model on the edge by taking advantage
of transfer learning. After retraining, the edge will build
a personalized model which has better performance for
the data generated on the edge. This will be the future
dataflow of EI



III. OpenEl: OPEN FRAMEWORK FOR EDGE
INTELLIGENCE

In this section, we introduce an Open Framework for Edge
Intelligence (OpenEl), a lightweight software platform to
equip the edge with intelligent processing and data sharing
capability. The goal of OpenEl is that any hardware, ranging
from Raspberry Pi to a powerful Cluster, will become an
intelligent edge after deploying OpenEIl. Meanwhile, the EI
attributes, accuracy, latency, energy, and memory footprint,
will have an order of magnitude improvement comparing to the
current Al algorithms running on the deep learning package.

A. Requirements

Let us use an example of building an EI application to
walk through the requirements of OpenEl. If we want to
enable a new Raspberry Pi EI capability, deploying and
configuring OpenEl is enough. After that, the Raspberry Pi
is able to detect multiple objects directly based on the data
collected by the camera on board and meet the real-time
requirement. It also has the ability to execute the trajectory
tracking task collaborated with other OpenEl deployed edges.
Several questions may arise: how does Raspberry Pi collect,
save, and share data? How does Raspberry Pi run a powerful
object detection algorithm in the real-time manner? How does
Raspberry Pi collaborate with others?

To realize the example above, OpenEl should meet the
following four requirements: ease of use, optimal selection,
interoperability, and optimization for the edge. The detailed
explanations are as follows:

Ease of use. Today, it is not very straightforward to deploy
the deep learning framework and run AI models on the edge
because of the current complicated process to deploy and
configure. Drawing on the idea of plug and play, OpenEl is
deploy and play. By leveraging the API, OpenEl is easy to
install and easy to develop third-party applications for users.

Optimal selection. The biggest problem is not the lack
of algorithms, but how to choose a matched algorithm for
a specific configuration of the edge. The model selector is
designed to meet the requirements.

Interoperability. To collaborate with the cloud and other
heterogeneous edges, OpenEl is designed as a cross-platform
software. 1ibei provides RESTful API for the edge to
communicate and work with others.

Optimization for the edge. To run heavy Al algorithms on
the edge, being lightweight is the core feature as well as a
significant difference between OpenEIl and other data analyze
platforms. Two methods are used to optimize the algorithm
for the edge. One is adopting the package manager which has
been optimized for the edge and cutting out the redundancy
operations unrelated to deep learning. The other is running
lightweight algorithms which have been co-optimized with the
package.

The answers will be found in the design of OpenEl. Figure
4 shows the overview of OpenEl, which consists of three
components: a package manager to run inference and train
the model locally, a model selector to select the most suitable
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Fig. 4. The overview of OpenEl.

model for the edge, and 1ibei, a library including a RESTful
API for data sharing.

B. Package Manager

Similar to TensorFlow Lite [15], package manager is a
lightweight deep learning package which has been optimized
to run Al algorithms on the edge platform, which guaran-
tees the low power consumption and low memory footprint.
package manager is installed on the operating system of
edge hardware and provides a running environment for Al
algorithms. In addition to supporting the inference task as
TensorFlow Lite does, package manager also supports training
the model locally. By retraining the model based on the local
data, OpenEI provides a personalized model which performs
better than general models.

Emerging computing challenges require real-time learning,
prediction, and automated decision-making in diverse EI do-
mains such as autonomous vehicles and health-care informat-
ics. To meet the real-time requirement, package manager con-
tains a real-time machine learning module. When the module
is called, the machine learning task will be set to the highest
priority to ensure that it has as many computing resources as
possible. Meanwhile, the models are optimized for the package
manager since the co-optimization of the framework and
algorithms is capable of increasing the system performance
and speedup the execution. That is why Raspberry Pi has the
ability to run a powerful object detection algorithm smoothly.

C. Model Selector

Currently, neural network based models have started to
trickle in. We envision that the biggest problem is not the lack
of models, but how to select a matched model for a specific
edge based on different EI capabilities. The model selector in-
cludes multiple optimized Al models and a selecting algorithm
(SA). The optimized models have been optimized to present
a better performance on the package manager based on the
techniques which will be discussed in detail in Section IV.A.
Model selecting can be regarded as a multi-dimensional space
selection problem. As is shown in Figure 5, there are at least



three dimensions to choose, e.g., Al models, machine learning
packages, and edge hardware. Taking image classification as
an example, more than 10 Al models (AlexNet, Vgg, ResNet,
MobileNet, to name a few), 5 packages (TensorFlow, PyTorch,
MXNet, to name a few), and 10 edge hardware platforms
(NVIDIA Jetson TX2, Intel Movidius, Mobile Phone, to name
a few) need to be considered.
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Fig. 5. Model selector.

SA in model selector is designed to find the most suit-
able models for the specific edge platform based on users’
requirements. It will first evaluate the EI capability of the
hardware platform based on the four-element tuple ALEM
< Accuracy, Latency, Energy, Memory footprint > and
then selecting the most suitable combinations, which is re-
garded as an optimization problem:

arg min L
mé&Models (])
s.t. A > Areqa E < EproaM < Mpro

where A, L, E, M refer to Accuracy, Latency, Energy, Memory
footprint when running the models on the edge. A,., denotes
the lowest accuracy that meet the application’s requirement.
E,., and M, are the energy and memory footprint that the
edge provides. m refers to the selected models and M odels
refers to all the models. Equation 1 depicts the desire to
minimize Latency while meeting the Accuracy, Energy
and Memory footprint requirements. Meanwhile, if users
pay more attention to Accuracy, the optimization target will
be replaced by maximize A and the constraints are L, F,
and M. The same is true of other requirements, i.e. Energy
and Memory footprint. Deep reinforcement learning will be
leveraged to find the optimal combination.

D. libei

libei provides a RESTful API which makes it possible to
communicate and work together with the cloud, other edges,
and IoT devices. Every resource, including the data, computing
resource, and models, are represented by a URL whose suffix
is the name of the desired resource. As is shown in Figure 6,
the RESTful API provided by 1ibei consists of four fields.

The first field is the IP address and port number of the edge.
The second field represents the type of recourse, including the
algorithm whose suffix is ei_algorithms and the data whose
suffix is ei_data. If users call for the algorithm, the third
field indicates the application scenario that OpenEl supports,
including connected vehicles, public safety, smart home, and
connected health. The last field is the specific algorithm that
the application scenario needs. The argument is the parameter
required for algorithm execution. In terms of calling for data
APIs, the third field indicates the data’s type, including real-
time data and historical data and the last field represents the
sensor’s ID. Developers will get the data over a period of time
by the start and end which are provided by the timestamp
argument.

@II Algorithm:

IP Address Resource Type Scenario  Algorithm Argumerm

GET http://ip:port/ei_algorithms/safety/detection/{video}
Purpose: Get the object detection by “video”

Call Data: IP Address Res Type Datatype Sensor ID Argument
GET http://ip:port;ei_data/realtime/cameral/{timestamp}

Qurpose:

Get the video data from cameral by “timestamp” J

Fig. 6. The RESTful API of libei

E. Summary

At last, let echo the original example of building
an object detection application on the Raspberry Pi to
introduce the programming model and summarized the
processing flow of OpenElI. When OpenEl has been
deployed on the Raspberry Pi, the developer is able to visit
http://ip:port/ei_data/realtime/cameral/timestamp=present_time
to get the real-time video frames which could
save on the Raspberry Pi. Subsequently, the URI
http://ip:port/ei_algorithms/safety/detection/video=video
will be visited to call for the object detection function and
response the detection results to the developer.

In terms of the processing flow of OpenEl, when 1libei
receives the instruction of object detection, the model selector
will choose a most suitable model from the optimized models
based on the developer’s requirement (the default is accuracy
oriented) and the current computing resource of the Raspberry
Pi. Subsequently, package manager will call the deep learning
package to execute the inference task. If the application is
urgent, the real-time machine learning module will be called
to guarantee the latency.

IV. KEY TECHNIQUES

Many techniques from Al and EC promote the development
of ElL In this section, we summarize the key techniques and
classify them into four aspects: algorithms, packages, running
environments and hardware. The implement of OpenEl will
leverage the latest techniques in algorithms and packages.



OpenEI will be installed on the running environments and the
performance of the hardware will offer significant references
when designing the model selector of OpenEl.

A. Algorithms

Although neural networks are currently widely deployed
in academia and industry to conduct nonlinear statistical
modeling with state-of-the-art performance on problems that
were previously thought to be complex, it is difficult to deploy
neural networks on edge devices with limited resources due
to their intensive demands on computation and memory. To
address this limitation, two main categories of solutions have
been recently proposed. One category refers to the deep model
compression method, which aims to aid the application of
current advanced networks in devices. The other is the EI
algorithm, which refers to the efficient machine learning algo-
rithms that we developed to run on the resource-constrained
edges directly.

1) Compression: Compression techniques are roughly cat-
egorized into three groups: Parameter sharing and pruning
methods, low-rank approximation methods, and knowledge
transfer methods [18], [19].

Parameter sharing and pruning method control the capacity
and storage cost by reducing the number of parameters which
are not sensitive to the performance. This method only needs
to save the values of these representatives and the indexes of
these parameters. Courbariaux et al. [20] proposed a binary
neural network to quantify the weights. More specifically, it
refers to restricting the value of the network weight by setting
itto -1 or 1, and it simplifies the design of hardware that is ded-
icated to deep learning. Gong et al. [21] employed the k-means
clustering algorithm to quantize the weights of fully connected
layers, which could achieve up to 24 times the compression
of the network with only 1% loss of classification accuracy
for the CNN network in the ImageNet challenge. Chen et
al. [22]presented a HashedNets weight sharing architecture
that groups connection weights into hash buckets randomly
by using a low-cost hash function, where all connections of
each hash bucket have the same value. The values of the
parameters are adjusted using the standard backpropagation
method [23] during training. Han et al. [24] pruned redundant
connections using a three-step method: First, the network
learns which connections are important, and then they prune
the unimportant connections. Finally, they retrain the network
to fine tune the weights for the remaining connections.

Low-rank approximation refers to reconstructing the dense
matrix to estimate the representative parameters. Denton et
al. [25] use singular value decomposition to reconstruct the
weight of all connected layers, and they triple the speedups
of convolutional layers on both CPU and GPU, and the loss
of precision is controlled within 1%. Denil et al. [26] employ
low-rank approximation to compress the weights of different
layers and reduce the number of dynamic parameters. Sainath
[27] uses a low-rank matrix factorization on the final weight
layer of a DNN for acoustic modeling.

Knowledge transfer is also called teacher-student training.
The idea of knowledge transfer is to adopt a teacher-student
strategy and use a pre-trained network to train a compact
network for the same task [28]. It was first proposed by
Caruana et al. [29]. They used a compressed network of
trained network models to mark some unlabeled simulation
data and reproduced the output of the original larger network.
The work in [30] trained a parametric student model to
estimate a Monte Carlo teacher model. Ping et al. [31] use the
neurons in the hidden layer to generate more compact models
and preserve as much of the label information as possible.
Based on the idea of function-preserving transformations, the
work in [32] instantaneously transfers the knowledge from a
teacher network to each new deeper or wider network.

TABLE 1
TYPICAL APPROACHES FOR DEEP COMPRESSION.

ntative parame-
ters

models and training
from scratch

Method Description Advantages Disadvantages
Pruning requires man-
Reducing uninfor- Robust to various ual setup of sensitiv-
Parameter mative parameters settings, su- ity for layers, which
sharing that are not sen- pport training demands fine-tuning
and pruning | sitive to the perfor- from scratch and of the parameters and
mance pre-trained model may be cumbersome
for some applications.
. . Straightforward for
Using the matrix & . . .
o model compression, | The implementation
decomposition . . .
- standardized pipe- involves the decom-
Low-rank method to figure . o .
B line, support position operation,
factorization | out the represe- . P .
pre-trained which is computati-

onally expensive

Knowledge
transfer

Using a pre-trained
neural network to
train a compact
network on the same

Make deeper
models thinner,
significantly
reduce the

Only be applied

to the classification
tasks with softmax
loss functions, netw-
ork structure only

computational

task
cost

support training from
scratch

Table I concludes the above three typical compression
technologies, and describes the advantages and disadvantages
of each technology.

2) EI algorithm: In this paper, we define EI algorithms
as the those designed for the resource-constrained edges
directly. Google Inc. [9] presented efficient CNN for mo-
bile vision applications, called MobileNets. The two hyper-
parameters that Google introduced allow the model builder
to choose the right sized model for the specific application.
It not only focuses on optimizing for latency but also builds
small networks. MobileNets are generated mainly from depth-
wise separable convolutions, which were first introduced in
the work of [33] and subsequently employed in Inception
models [34]. Flattened networks [35] are designed for fast
feedforward execution. They consist of a consecutive se-
quence of one-dimensional filters that span every direction of
three-dimensional space to achieve comparable performance
as conventional convolutional networks [36]. Another small
network is the Xception network [37]; Chollet et al. proposes
the dubbed Xception architecture inspired by Inception V3,
where Inception modules have been replaced with depthwise
separable convolutions. It shows that the architecture slightly
outperforms Inception V3 on the ImageNet data set. Subse-
quently, Iandola et al. [38] developed Squeezenet, a small



CNN architecture. It achieves AlexNet-level [39] accuracy
with 50 times fewer parameters on ImageNet data set (510
times smaller than AlexNet).

In 2017, Microsoft Research India proposed Bonsai [40]
and ProtoNN [41]. Then, they developed EMI-RNN [42]
and FastGRNN [43] in 2018. Bonsai [40] refers to a tree-
based algorithm used for efficient prediction on IoT devices.
More specifically, it is designed for supervised learning tasks
such as regression, ranking, and multi-class classification, etc.
ProtoNN [41] is inspired by k-Nearest Neighbor (KNN) and
could be deployed on the edges with limited storage and
computational power (e.g., an Arduino UNO with 2kB RAM)
to achieve excellent prediction performance. EMI-RNN [42]
requires 72 times less computation than standard Long Short-
term Memory Networks (LSTM) [44] and improving accuracy
by 1%.

Open Problems: Here are three main open problems that
need to be addressed to employ EI algorithms on edges. First,
to reduce the size of algorithms, many techniques have been
proposed to reduce the number of connections and parameters
in neural network models. However, the pruning process
usually affects algorithm accuracy. Hence, how to reduce the
model size while guaranteeing high accuracy is a research
direction in the EI area. Second, collaboration between edges
calls for an algorithm that runs in a distributed manner on
multiple edges. It is a challenge to research how to split an
algorithm based on the computing resources of the edges.
Third, how to achieve collaborative learning on the cloud and
edges is also a research direction.

B. Packages

In order to execute Al algorithms efficiently, many deep
learning packages are specifically designed to meet the com-
puting paradigm of Al algorithms, such as TensorFlow, Caffe,
MXNet, and PyTorch. However, these packages are focused on
the cloud and not suitable for the edge. On the cloud, packages
use a large-scale dataset to train deep learning models. One
of the main tasks of packages is to learn a number of weights
in each layer of a model. They are deployed on the high-
performance platforms, such as GPU, CPU, FPGA, and ASIC
(TPU [45]) clusters. On the edges, due to limited resources,
packages do not train models in most cases. They carry on
inference tasks by leveraging the models which have been
trained in the cloud. The input is small-scale real-time data
and the packages are installed on the heterogeneous edges,
such as edge server, mobile phone, Raspberry Pi, laptop, etc.

To support processing data and executing Al algorithms on
the edges, several edge-based deep learning packages have
been released by some top-leading tech-giants. Compared with
cloud versions, these frameworks require significantly fewer
resources, but behave almost the same in terms of inference.
TensorFlow Lite [15] is TensorFlow’s lightweight solution
which is designed for mobile and edge devices. It leverages
many optimization techniques, including optimizing the ker-
nels for mobile apps, pre-fused activations, and quantized
kernels to reduce the latency. Apple published CoreML [16],

a deep learning package optimized for on-device performance
to minimizes memory footprint and power consumption. Users
are allowed to integrate the trained machine learning model
into Apple products, such as Siri, Camera, and QuickType.
Facebook developed QNNPACK (Quantized Neural Networks
PACKage) [46], which is a mobile-optimized library for high-
performance neural network inference. It provides an imple-
mentation of common neural network operators on quantized
8-bit tensors.

In the meantime, cloud-based packages are also starting to
support edge devices, such as MXNet [14] and TensorRT [47].
MXNet is a flexible and efficient library for deep learning. It
is designed to support multiple platforms (either cloud plat-
forms or edge ones) and execute training and inference tasks.
TensorRT is a platform for high-performance deep learning
inference, not training and will be deployed on the cloud
and edge platforms. Several techniques, including weight and
activation precision calibration, layer and tensor fusion, kernel
auto-tuning, and multi-stream execution are used to accelerate
the inference process.

Zhang et al. made a comprehensive performance compari-
son of several state-of-the-art deep learning frameworks on the
edges and evaluated the latency, memory footprint, and energy
of these frameworks with two popular deep learning models
on different edge devices [48]. They found that no framework
could achieve the best performance in all dimensions, which
indicated that there was a large space to improve the perfor-
mance of Al frameworks on the edge. It is very important and
urgent to develop a lightweight, efficient and highly-scalable
framework to support Al algorithms on edges.

Open Problems: There are several open problems that need
to be addressed to be able to build data processing frameworks
on the edge. First, to execute real-time tasks on the edge,
many packages sacrifice memory to reduce latency. However,
memory on the edge is also limited. Thus, how to tradeoff
the latency and memory? Second, having access to personal-
ized, training on the edge is ideal while the training process
usually requires huge computing resources. Therefore, how
to implement a local training process with limited computing
power? Last, with the support of OpenEl, the edge will need
to handle multiple tasks which raises the problem of how to
execute multiple tasks on a package in the meantime.

C. Running environments

The most typical workloads from EI are model inference
and collaborative model training, so the EI running environ-
ments should be capable of handling deep learning packages,
allocating computation resources and migrating computation
loads. Meanwhile, they should be lightweight enough and can
be deployed on heterogeneous hardware platforms. Taking the
above characteristic into account, some studies like TinyOS,
ROS, and OpenVDAP are recognized as potential systems to
support EI.

TinyOS [49] is an application based operating system for
sensor networks. The biggest challenge that TinyOS has solved



is to handle concurrency intensive operations with small phys-
ical size and low power consumption [50]. TinyOS takes an
event-driven design which is composed of a tiny scheduler and
a components graph. The event-driven design makes TinyOS
achieve great success in sensor networks. However, enabling
effective computation migration is still a big challenge for
TinyOS.

Robot Operating System(ROS) [51] is recognized as the
typical representative of next the generation of mobile oper-
ating systems to cope with the Internet of Things. In ROS,
the process that performs computations is called a node.
For each service, the program or features are divided into
several small pieces and distributed on several nodes, and
the ROS topic is defined to share messages between ROS
nodes. The communication-based design of ROS gives it high
reusability for robotics software development. Meanwhile, the
active community and formation of the ecosystem put ROS
in a good position to be widely deployed for edge devices.
However, as ROS is not fundamentally designed for resource
allocation and computation migration, there are still challenges
in deploying EI service directly on ROS.

OpenVDAP [52] is an edge based data analysis plat-
form for Connected and Autonomous Vehicles(CAVs). Open-
VDAP is a full stack platform which contains Driving Data
Integrator(DDI), Vehicle Computing Units(VCU), edge-
based vehicle operating system(EdgeOS,,), and libraries for
vehicular data analysis(libvdap). Inside OpenVDAP, VCU
supports EI by allocating hardware resources according to
an application, and libvdap supports EI by providing multi-
versions of models to accelerate the model inference.

Open Problems: There is a crucial open problem that needs
to be addressed: how to design a lightweight edge operating
system with high availability. For the scenario with dynamic
changes in topology and high uncertainty in wireless commu-
nication, the edge operating system calls for high availability
related to the consistency, resource management, computation
migration, and failure avoidance. Meanwhile, the edge operat-
ing system should be light enough to be implemented on the
computing resource-constraint edge.

D. Hardware

Recently, heterogeneous hardware platforms present the
potential to accelerate specific deep learning algorithms while
reducing the processing time and energy consumption [53],
[54]. For the hardware on EI, various heterogeneous hardware
are developed for particular EI application scenario to address
the resource limitation problem in the edge.

ShiDianNao [55] first proposed that the artificial intelligence
processor should be deployed next to the camera sensors. The
processor accesses the image data directly from the sensor
instead of DRAM, which reduces the power consumption
of sensor data loading and storing. ShiDianNao is 60 times
more energy efficient and 30 times faster than the previous
state-of-the-art Al hardware, so it will be suitable for the
EI applications related to computer vision. EIE [56] is an
efficient hardware design for compressed DNN inference. It

leverages multiple methods to improve energy efficiency, such
as exploiting DNN sparsity and sharing DNN weights, so it
is deployed on mobile devices to process some embedded EI
applications. In industry, many leaders have published some
dedicated hardware modules to accelerate EI applications; for
example, IBM TrueNorth [57] and Intel Loihi [58] are both
the neuromorphic processors.

In addition to ASICs, several studies have deployed FPGAs
or GPUs for EI application scenarios, such as speech recogni-
tion. ESE [59] used FPGAs to accelerate the LSTM model on
mobile devices, which adopted the load-balance-aware pruning
method to ensure high hardware utilization and the partitioned
compressed LSTM model on multiple PEs to process LSTM
data flow in parallel. The implementation of ESE on Xilinx
FPGA achieved higher energy efficiency compared with the
CPU and GPU. Biookaghazadeh et al. used a specific EI
workload to evaluate FPGA and GPU performance on the edge
devices. They compared some metrics like data throughput
and energy efficiency between the FPGA and GPU. The
evaluation results showed that the FPGA is more suitable for
EI application scenarios [60]. In industry, NVIDIA published
the Jetson AGX Xavier module [61], which is equipped with
a 512-core Volta GPU and an 8-core ARM 64-bit CPU. It
supports the CUDA and TensorRT libraries to accelerate EI
applications in several scenarios, such as robot systems and
autonomous vehicles.

Open Problems: There are several open problems that
need to be addressed to design a hardware system for EI
scenarios. First, novel hardware designed for EI has improved
the processing speed and energy efficiency; hence, the question
remains whether there is any relationship between the process-
ing speed and power. For example, if the processing power
is limited, we need to know how to calculate the maximum
speed that the hardware reaches. Second, the EI platform may
be equipped with multiple types of heterogeneous computing
hardware, so managing the hardware resource and scheduling
the EI application among the types of hardware to ensure high
resource utilization are important questions. Third, we need to
be able to evaluate how suitable the hardware system is for
each specific EI application.

V. TYPICAL APPLICATION SCENARIOS

With the development of EI techniques, many novel ap-
plications are quickly emerging, such as live video analytics
for public safety, connected and autonomous driving, smart
homes, and smart and connected health care services. As
shown in Figure 4, OpenEI provides RESTful API to support
these Al scenarios. This section will illustrate the typical
application scenarios and discuss how to leverage OpenEl to
support these applications.

A. Video Analytics in Public Safety

Video Analytics in Public Safety(VAPS) is one of the most
successful applications on edge computing since it has the
high real-time requirements and unavoidable communication
overhead. OpenEl is used to deploy on cameras or edge severs



to support VAPS and provide an API for the user. Third-
party developers execute the widely used algorithms on public
safety scenarios by calling http://ip:port/ei_algorithms/safety/
plus the name of the algorithms. The applications of video
analysis for public safety that OpenEl supports are divided
into the following two aspects.

The first aspect is from the algorithm perspective, which
is aimed at designing a lightweight model to support EI. The
strength of edge devices is that the data is stored locally so
there is no communication delay. However, one drawback is
that edge devices are not powerful enough to implement large
neural networks; the other is that the vibration in a video frame
makes it more difficult to analyze. For example, criminal scene
auto detection is a typical application of VAPS. The challenges
are created by real-time requirements and the mobility of
the criminal. Hence, the model should do preprocessing on
each frame to evict the influence of mobility. In addition to
criminal scene auto detection, for some applications like High-
Definition Map generation, masking some private information
like people’s face is also a potential VAPS application. The
objective is to enable the edge server to mask the private infor-
mation before uploading the data. Video frame preprocessing
at the edge supports EI by accelerating the model training and
inference process.

The second aspect is from the system perspective, which
enables edge devices like smartphones and body cameras to
run machine learning models for VAPS applications. In [62],
an edge based real-time video analysis system for public safety
is proposed to distribute the computing workload in both the
edge node and the cloud in an optimized way. A3 [63] is an
edge based amber alert application which support distributed
collaborative execution on the edge. SafeShareRide [64] is an
edge based detection platform which enables a smartphone
to conduct real-time detection including video analysis for
both passengers and drivers in ridesharing services. Moreover,
a reference architecture which enables the edge to support
VAPS applications is also crucial for EI. In [65], Liu et al.
proposed a reference architecture to deploy VAPS applications
on police vehicles. EI will be supported through efficient data
management and loading.

B. Connected and Autonomous Vehicles

Today, a vehicle is not just a mechanical device but is
gradually becoming an intelligent, connected, and autonomous
system. We call these advanced vehicles connected and au-
tonomous vehicles (CAVs). CAVs are significant application
scenarios for EI and many applications on CAVs are tightly
integrated into EI algorithms, such as localization, object
tracking, perception, and decision making. OpenEI also pro-
vides API for the CAVs scenarios to execute the Al algorithm
on a vehicle. The input is the video data collected by on-board
cameras.

The autonomous driving scenario has conducted many clas-
sic computer vision and deep learning algorithms [66], [67].
Since the algorithms will be deployed on the vehicle, which is
a resource-constrained and real-time EC system, the algorithm

should consider not only precision but also latency, as the end-
to-end deep learning algorithm YOLOv3 [68]. To evaluate the
performance of algorithms in the autonomous driving scenario,
Geiger et al. published KITTI benchmark datasets [69], which
provide a large quantity of camera and LiDAR data for various
autonomous driving applications.

Lin et al. explored the hardware computing platform de-
sign of autonomous vehicles [70]. They chose three core
applications on autonomous vehicles, which are localization,
object detection, and object tracking, to run on heterogeneous
hardware platform: GPUs, FPGAs, and ASICs. According
to the latency and energy results, they provided the design
principle of the end-to-end autonomous driving platform. From
the industry, NVIDIA published the DRIVE PX2 platform
for autonomous vehicles [71]. To evaluate the performance
of the computing platform designed for CAVs, Wang et al.
first proposed CAVBench [72], which takes six diverse on-
vehicle applications as evaluation workloads and provides the
matching factor between the workload and the computing
platform.

In the real world, we still need a software framework to
deploy EI algorithms on the computing platform of connected
and autonomous vehicle. OpenVDAP [52], Autoware [73], and
Baidu Apollo [74] are open-source software frameworks for
autonomous driving, which provide interfaces for developers
to build and customize autonomous driving vehicles.

C. Smart Homes

Smart homes have become popular and affordable with
the development of EC and Al technologies. By leverag-
ing different types of IoT devices (e.g., illuminate devices,
temperature and humidity sensors, surveillance system, etc.),
it is feasible to keep track of the internal state of a home
and ensure its safety, comfort, and convenience under the
guarantee of EI. The benefit of involving EI in a smart
home is twofold. First, home privacy will be protected since
most of the computing resources are confined to the home
internal gateway and sensitive family data is prohibited from
the outflow. Second, the user experience will be improved
because the capability of intelligent edge devices facilitates
the installation, maintenance, and operation of a smart home
with less labor demanded. As an important EI scenario,
OpenEl provides APIs to call the Al algorithms related to the
smart home. http://ip:port/ei_algorithms/home/power_monitor
is used to call to execute the power monitoring algorithms on
the edge.

Intelligence in the home has been developed to some extent,
and related products are available on the market. As one of the
most intelligent devices in the smart home ecosystem, smart
speaker such as Amazon Echo [75], Google Home [76] are
quite promising models that involve in EI. They accept the
user’s instructions and respond accordingly by interacting with
a third party service or household appliances. From timing to
turning off lights, from memo to shopping, their intelligence
enhances people’s quality of life significantly. Despite this,
the utility of the edge is not well reflected and utilized in



this technology. Relying on cloud cognitive services, smart
speakers need to upload data to the cloud and use deep neural
networks for natural language understanding and processing,
which becomes a hidden danger of family data privacy leakage
and increases the burden of unnecessary network transmission.
EI is the principal way to solve these problems.

Considering the privacy of the home environment and the
accessibility of smart home devices, it is completely feasible
and cost-effective to offload intelligent functions from the
cloud to the edge, and there have been some studies demon-
strating EI capabilities. Wang et al. found that a smart home
will benefit from EI to achieve energy efficiency [77]. Zhang et
al. developed IEHouse, a non-intrusive status recognition sys-
tem, for household appliance [78] with the assistance of deep
neural networks. Zhang et al. proposed a CNN model running
on edge devices in a smart home to recognize activity with
promising results [12]. In addition to indoor activity detection,
surveillance systems play an important role in protecting the
home security both indoor and outside. Because the video
stream occupies a considerable storage space and transmission
bandwidth, it is almost impossible to upload every frame
recorded from a surveillance system to the cloud for further
processing, especially for high resolution videos [79]. EI
enables a surveillance device to have certain image processing
capabilities, such as object recognition and activity detection,
to extract valid information from redundant videos to save
unnecessary computing and storage space.

Home entertainment systems also benefit from EI to provide
a better user experience. A home audio and video system is
one typical example. With EI involved, the system handles the
user’s personalized recommendation service by itself, without
uploading any privacy data about the user’s preferences to the
cloud, so that the user has a smoother and safer entertainment
experience. Meanwhile, with the maturity of Augmented Re-
ality and Virtual Reality technology, users are able to have a
better game immersive experience. MUVR is proposed in this
scenario to boost the multi-user gaming experience with the
edge caching mechanism [80]. Motion sensing games are a
typical example. EI gives it the capability to detect action and
behavior without equipping users with a control bar or body
sense camera.

D. Smart and Connected Health

Health and biomedicine are entering a data-driven
epoch [81], [82]. On the one hand, the development of medical
instruments indicates health status with data. On the other
hand, the popularization of health awareness has led citizens to
track their physical condition with smart edge devices. Similar
to the other three scenarios above, OpenEl also provides the
API to call for the related algorithms. The EI of smart health
is quite promising and is created from the following aspects.

First is pre-hospital emergency medicine, where the emer-
gent patient is been cared for before reaching the hospital,
or during emergency transfer between hospitals, emergency
medical service (EMS) systems are provided in the form of
basic life support (BLS) and advanced life support (ALS).

Current EMS systems focus on responsiveness and trans-
portation time, while the health care solutions are traditional
and less efficient, some of which have been used since the
1990s. Although ALS is equipped with higher level care,
the number of ALS units is highly constrained because of
limited budgets [83]. In addition, the data transmission is
greatly affected by the moving scenario and the extreme
weather in the cloud computing. Considering the limitation
of the status quo, EI is an alternative way to enhance EMS
quality in terms of responsiveness and efficiency by building
a bidirectional real time communication channel between the
ambulance and the hospital, which has intelligent features like
natural language processing, and image processing.

Second is smart wearable sensors. Most of the current
technologies for smart wearable sensors are based on cloud
computing because of the limitations of computing resources
and capabilities. That is, wearable sensors are more like a data
collector than a data analyst. Fortunately, EI research in this
field is emerging. Rincon et al. deployed an artificial neural
network on wearable sensors to detect emotion [84]. With the
promising development of EC, there will be more light-weight
intelligent algorithms running on smart wearable devices to
monitor, analyze, and predict health data in a timely manner,
which it will ease the pressure on caregivers and doctors, and
let users have better knowledge of their physical condition.

Third is the preservation and sharing of medical data. The
US government has promoted the sharing of personal health
information since 2009 [85], but it turns out that although
doctors’ usage of electronic medical records has improved,
interoperability is missing, and the large amount of medical
data gathered together does not produce real value. EI im-
proves the status quo by training the sharing system to mark
and recognize medical images, promote communication, and
improve treatment efficiency.

VI. CONCLUSION

With the development of Al and EC, EI emerges since it has
the potential to reduced bandwidth and cost while maintaining
the quality of service compared to processing on the cloud. In
this paper, we define EI as a capability that enables edges to
execute artificial intelligence algorithms. To support EI, several
techniques are being developed, including algorithms, deep
learning packages, running environments and hardware. This
paper discussed the challenges that these techniques brings
and illustrated four killer applications in the EI area.

To address the challenges for data analysis of EI, computing
power limitation, data sharing and collaborating, and the
mismatch between the edge platform and Al algorithms, we
presented an Open Framework for Edge Intelligence (OpenEl)
which is a lightweight software platform to equip the edge with
intelligent processing and data sharing capability. We hope
that OpenEIl will be used as a model for prototyping in EI.
We also hope that this paper provides helpful information to
researchers and practitioners from various disciplines when
designing new technologies and building new applications for
EL
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