
IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, AUGUST 2020 1

AC4AV: A Flexible and Dynamic Access Control
Framework for Connected and Autonomous

Vehicles
Qingyang Zhang, Student member, IEEE, Hong Zhong, Jie Cui, Lingmei Ren and Weisong Shi, Fellow, IEEE

Abstract—Sensing data plays a pivotal role in connected
and autonomous vehicles (CAVs), enabling CAV to perceive
surroundings. For example, malicious applications might tamper
this life-critical data, resulting in erroneous driving decisions and
threatening the safety of passengers. Access control, one of the
promising solutions to protect data from unauthorized access, is
urgently needed for vehicle sensing data. However, due to the
intrinsic complexity of vehicle sensing data, including historical
and real-time, and access patterns of different data sources,
there is currently no suitable access control framework that can
systematically solve this problem; current frameworks only focus
on one aspect. In this paper, we propose a novel and flexible access
control framework, AC4AV, which aims to support various access
control models, and provide APIs for dynamically adjusting
access control models and developing customized access control
models, thus supporting access control research on CAV for the
community. In addition, we propose a data abstraction method
to clearly identify data, applications and access operations in
CAV, and therefore is easily able to configure the permits of
each data and applications in access control policies. We have
implemented a prototype to demonstrate our architecture on
NATS for real-time data and NGINX for historical data, and
three access control models as built-in models. We measured the
performance of our AC4AV while applying these access control
models to real-time and historical data. The experimental results
show that the framework has little impact on real-time data
access within a tolerable range.

Index Terms—connected and autonomous vehicle; access con-
trol; system security; data security.

I. INTRODUCTION

With the fast development of sensing, communication,
and artificial intelligence technologies, Connected and Au-

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Manuscript received March 1, 2020; revised XXXXXX XX, XXXX. The
work was supported by the National Natural Science Foundation of China
(No. 61872001, No. 6191101332, No. U1936220), the Open Fund of Key
Laboratory of Embedded System and Service Computing (Tongji University),
Ministry of Education (No. ESSCKF2018-03), the National Science Founda-
tion (CNS1741635), the Natural Science Foundation of Shandong Province
(No. ZR2018BF014), the Open Fund for Discipline Construction, Institute
of Physical Science and Information Technology, Anhui University and the
Excellent Talent Project of Anhui University. The authors are very grateful to
the anonymous referees for their detailed comments and suggestions regarding
this paper. (Corresponding author: Hong Zhong.)

Q. Zhang, H. Zhong and J. Cui are with the School of Computer Science
and Technology, Anhui University, Hefei 230039, China, and the Anhui
Engineering Laboratory of IoT Security Technologies, Anhui University, Hefei
230039, China. (e-mail: zhongh@ahu.edu.cn)

L. Ren is with the School of Computer Science, Shenzhen Institute of
Information Technology, Shenzhen 518172, China.

W. Shi is with the Department of Computer Science, Wayne State Univer-
sity, Detroit, MI 48202, U.S.A.

tonomous Vehicles (CAVs) have attracted a great deal of
attention from industry and academia [1, 2, 3]. Several au-
tonomous driving systems or commercial products have been
released in the industry, such as the Google Waymo [4]
vehicle, the Tesla Autopilot system, and the Baidu Apollo
platform [5]. With the liberation from driving, increasingly
more applications, especially various third-party applications
envisioned by [6], will be installed into future CAVs, as sup-
plements to other three kinds of applications, i.e., Advanced
Driver-Assistant System (ADAS), real-time diagnostics and in-
vehicle infotainment, to enrich the ride experience. Note that
some applications are cross-cutting because they fall under
more than one category. However, all of they utilize vehicle
sensing data, sensed by a plethora of diverse sensors, to realize
their functions. For example, the ADAS leverages the data
of installed cameras, light detection and ranging (LiDAR),
radio detection and ranging (radar), as well as vehicle status
captured from Controller Area Network (CAN) to perceive
the surroundings and an attack detection application to access
the in-vehicle sound data captured by the microphone as the
input of its speech recognition [7]. That means the sensed life-
critical data is not only used as the input of ADAS, but it is
also used by various third-party applications. The malicious
applications may preempt the limited computing, memory,
storage, and network resources to perform their purpose after
obtaining data from the CAV system, which will affect the
safety of CAVs. Some malicious third-party might tamper
data, leading to wrong decisions on driving, even threatening
personal and public safety.

In prior researches, the access control technique [8, 9, 10] is
used to protect data from malicious applications by rejecting
unauthorized access, which is a security technique regulating
who or what can view or use resources in a computing
environment. Figure 1 illustrates the usage of access control
technique in CAV. However, most current researches on CAVs
focus on the implementation of autonomous driving vehicle
prototypes, including hardware, autonomous driving algorithm
[11] and platform [2, 5, 12], and the access control framework
enabling the function of applying access control technique to
vehicular data is lacking in these researches. Hence, the first
thing is to build an access control framework for future CAV.
However, the future CAV, with various applications, vehicular
data and different access patterns on different vehicular, is
more complex, thus no one existing access control framework
could be applied on CAV, directly. But existing mechanisms
used by some operating systems [13, 14, 15] provide some

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, AUGUST 2020 2

experiences for referencing.

Fig. 1. The function of an access control system.

Typically, different access control models are suitable for
different scenarios with different characteristics [16]. For
example, attribute-based access control models with high con-
fidentiality are widely used in a cloud-based storage scenario
[17]. However, its computing resource costs are high and it
might not be suitable for CAV data. In the CAV area, both
performance and security are of high priority. Thus how to
choose suitable access control models for different vehicular
data is an open problem since no one knows the effects
after applying one access control model. But, in any case,
some characteristics in the system level should be supported
that make the implementation of access control models be
more easy and flexible. Firstly, some novel access control
models might be proposed for applications, especially for
as yet unforeseen applications. Thus, an open access control
framework is required for access control research. Secondly,
the access control framework should be fine-grained. Taking
the permits of the steering wheel as an example, it only
could be controlled by ADAS applications, but could be
monitored by many other applications. Thirdly, access control
should be dynamically changed with the context of CAV and
system status. For example, in the application proposed in
[7], considering the user privacy, the permit to access inside
video should be dynamically gained and revoked depending
on the recognition of a “help” signal from an inside squeal
voice. Finally, the framework should support applying different
access control models to the same data with different grains
or different data.

However, the design of access control architecture for the
future is challenging as it must fulfill the above requirements
while it must meet the intrinsic complexity of vehicular data,
including historical and real-time, and access patterns of differ-
ent vehicular data. Furthermore, there exist various vehicular
data and applications in one CAV, resulting in another chal-
lenge when developing such an access control framework for
future CAV. Generally speaking, an access control framework
should know and identify which application is accessing
which vehicular data with which access operation. Here
naming is a problem, especially for supporting of fine-grained
and dynamic access control, an easy-to-read and organized
naming mechanism is important so that researcher and user

could easily set access permissions for different applications,
data, and operations.

To tackle the aforementioned issues, in this paper, we first
introduce the data generated and stored in CAVs and its access
patterns based on our observations. Then, we introduce de-
signed access control architecture and data abstraction method
to identify application, data and operation. The proposed
framework serves as the access control part of our previous
work, Open Vehicular Data Analytics Platform (OpenVDAP)
[6], which is a full-stack edge supported platform that includes
a series of heterogeneous hardware and software solutions. We
also implement an access control framework prototype based
on the proposed architecture, which responds to queries for
access actions and records these actions for future auditing.
The contributions are summarized as follows:
• This paper is the first to define the data access control

problem in CAVs. According to the observations on
several CAV platforms, we introduce the characteristics
of data and access pattern in emerging CAVs, in terms of
real-time data and historical data, while different access
patterns are applied. Moreover, different and some new
access control models are required.

• We propose a three-layer access control architecture to
protect data on CAVs from unauthorized access. The
designed architecture supports fine-grained and dynamic
access control, and it is extensible with APIs to assign
customized access control models implemented by others,
as well as respond to external access actions, resulting in
easily extending to meet other access patterns.

• We demonstrate the proposed design through a prototype
framework and evaluate it using different access control
models. Experiment results show that our framework has
a low impact on real-time data and a high but tolerable
impact on historical data, which could be solved by pe-
riodically caching application information. Furthermore,
we also test our framework on an experimental CAV
platform implemented based on OpenVDAP architecture,
HydraOne [18], which indicates that our framework could
run on platforms with different hardwares.

The remainder of this paper is organized as follows. We
introduce the access control problem of CAVs in Section
II. The designed access control framework is presented in
Section III, followed by its instantiated framework in Section
IV. Section V-C shows the results by leveraging video data
acquisition for analysis as a case study. We review related
works in Section VI. Finally, we conclude this paper in Section
VII.

II. PROBLEM STATEMENT

The data in CAVs is important since it affects the decision
of autonomous driving algorithms and has implications for
passenger privacy. How to protect data from unauthorized
access in CAVs is a big challenge. In this section, we first
introduce vehicular data access patterns. Then, the requirement
of CAV’s access control framework supporting different access
control models is analyzed. Finally, we formally present the
problems of designing an access control framework for future
CAVs.

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, AUGUST 2020 3

A. Data Access Pattern in CAV
As observed in [19], there are four categories of applica-

tions, consisting of ADAS [11, 20], real-time diagnostics [21],
in-vehicle infotainment, and third-party application [19, 22].
The data accessed by these applications could be classified
into two categories, real-time data and historical data, based
on the observation of several CAV platforms, which will be
accessed with different access patterns. Thus, we will analyze
the data access pattern. Table I lists the storage locations and
potential access patterns of these data.

Real-time data: The main requirements for real-time data
access are low latency and one-to-many communication since
different applications might access the same real-time data at
the same time. Most existing CAV solutions utilize normal
or modified versions of the robot operating system (ROS)
[1], which provides the publish/subscribe pattern for different
applications of CAVs. Taking Apollo as an example, which is
an open-source CAV platform, including hardware reference,
system, software and autonomous driving algorithms, it modi-
fied ROS as an underlying system and utilizes message-based
communications (publish/subscribe pattern) to deal with one-
to-many communication (shared memory technique to reduce
the latency of data transmission after version 3.5). In academia,
OpenVDAP [6] also utilizes a message-based architecture to
enable communications of real-time data between devices and
applications.

Fig. 2 illustrates an example data processing flow of real-
time camera data under the publish/subscribe pattern. The
camera pushes raw images to the topic of camera.id1.image,
and several processing nodes subscribe this topic while the
encoding node encodes images into videos for persisting
camera data into the file system as historical video data, and
the SLAM node analyzes images for autonomous driving. The
path planning node (also an autonomous driving application)
subscribes the output of the SLAM node and publishs the
control data for chassis control.

Fig. 2. An example data flow of a real-time camera data.

Historical data: For historical data, current CAV solutions
persist real-time data using the ROS built-in function, which
directly saves data as ROS packages. However, it is not a
good way for future CAVs. A simple way is storing structured
data (e.g., GPS data) into a database and unstructured data
(e.g., video) in the file system. In this case, the application
could inquire about the structured data from the database
directly, or inquire about the storage path of the unstructured
data from the database; then it could access the file in the file
system.

However, it is insecure to provide a database interface for
a CAV on the road. Thus, a centralized manager is needed.
To this end, Zhang et al. proposed a module, Driving Data
Integrator (DDI) in the OpenVDAP platform [6, 23], to

automatically collect and store relevant context information
on the vehicle and the Internet. The application could inquire
data from this service. In addition, we need to note that the
unstructured data could be accessed through the file system
(paths are queried from DDI) or through the DDI service as
a more secure method.

B. Access Control
The access control technique aims to protect data and

resource in a computer system from unauthorized access.
Typically, it includes several concepts, such as access control
framework and access control model. The former one captures
access actions in an application system or operating system,
and apply one of access control models to authenticate the
access actions. As mentioned before, different types and access
patterns of data exist in CAV, and different applications are
willing to manage their data in different ways. Specially, for
these as yet unforeseen applications, some novel access control
models might be proposed.

Based on the characteristics and requirements of the applied
scenario, various access control models have been proposed,
such as Role-Based Access Control (RBAC), Identify-Based
Access Control (IBAC) and Attribute-Based Access Control
(ABAC) [24]. For example, the historical battery information
under IBAC model could be shared with the ones who have
the identity certificate issued by the car maker. Meanwhile,
access control models founded upon fine-grained and attribute-
based encryption could secure data and prevent unauthorized
access (without right attributes), which we will introduce in
Section IV. Thus, how to support several access control models
thus provide a flexible and suitable choice for CAV and CAV
application developers is still a big challenge.

Moreover, the context of CAV is also important for access
control. For instance, third-party applications are prohibited
from accessing network resources due to insufficient network
bandwidth. Or, third-party applications are prohibited from
accessing camera resources to avoid privacy leak, when the
CAV is in a special location.
Problem Statement: Current access control frameworks usu-
ally focus on only one type of data. For example, access
control frameworks in the operating system, messaging sys-
tem, and web service system focus on access of file systems,
topics, and HTTP requests, respectively. Thus, to protect data
with a suitable access control models in CAVs with various
applications, data, data access patterns, a systematical and
flexible access control framework is needed, which is enable
to face possible changes occurred in the future, firstly. Here
several barriers must be solved as follows: 1) how to design a
framework to authenticate these access actions from different
data sources with different access patterns? 2) how to enable
the supporting different access control models in one access
control framework, and also enable the development of new
access control models? 2) how to uniquely identify various
data in access actions and access control models from different
data sources? and 3) how to dynamically make decisions
on access actions based on current vehicle status, including
location, computing resource, network resource, as well as
supporting different access control models for different data?

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, AUGUST 2020 4

TABLE I
REAL-TIME DATA AND HISTORICAL DATA IN CAVS.

Category Examples Storage location Potential access pattern
Real-time GPS, video, Radar, LiDAR cloud point, engine load, etc. Pub/sub System Pub/sub

Historical GPS, traffic data, and metadata of unstructured data. Database Web service
Video, LiDAR cloud point data. File system Web service

III. SYSTEM ARCHITECTURE

We have introduced the motivations and goals for access
control framework in future CAVs, and now we will present
our design. First, we will introduce some concepts in an access
control framework, followed by the security and threat model.
Then, we primarily focus on introducing the proposed access
control framework for future CAVs.

A. Definition

A traditional access control framework will authenticate
one subject whether it has the permission of one type of
operation to one object. Thus, an access action could be
described as a tuple {subject, object, operation}.
In detail, the descriptions of object, subject and
operation in our CAV-specific framework are as follows.

Subject. Various applications, including native applications
(e.g., ADAS applications) and third-party applications, are
installed on CAVs, enhancing the ride experience and public
safety, and they need to access and analyze data sensed by
CAVs, thus becoming subjects.

Object. The objects refer to the data in CAVs, e.g., real-
time data and historical data. It is easy to understand, and
most applications analyze sensed data (as objects) for
autonomous vehicles. Additionally, remote data, such as road
conditions or weather data from remote cloud servers or other
vehicles also is included. Furthermore, the application data
is also the object in CAVs, since some applications might
share/require results from collaborative applications.

Operation. As mentioned above, there exist several
data sources in CAVs, including publish/subscribe sys-
tem for real-time data, Web-based service for struc-
tured data and file system for unstructured data. Thus,
the operations defined in access actions currently in-
clude subscribe/publish, get/post/delete and
create/read/write/delete, respectively.

In this paper, we aim to build an access control frame-
work supporting different access control models with dynamic
adjustment. Thus, we add a segment extra to that tuple,
which is used to store additional information. In the following
sections, the tuple is defined as follows.

{subject, object, operation, extra} (1)

B. Security and Threat Model

The malicious applications in our threat model always try
to subscribe to the data-related topics in the Pub/Sub system,
query historical data from the database or file system. Typi-
cally, applications are isolated utilizing container technology,
and they cannot access others’ memory to obtain data, such

as subscribed data and the authentication information. In this
paper, we do not consider the leakage of authentication infor-
mation and it could be secured by other approaches, such as
secure storage. Additionally, the trusted execution environment
is also promising to provide the isolation of applications,
by executing part of one application in a hardware-assistant
environment, so that the running application can be protected
from not only other applications but also the operating sys-
tem and even hypervisor. Moreover, our AC4AV also can
be executed in that trusted execution environment, such as
Intel Software Guard eXtensions (SGX) or AMD Memory
Encryption Technology [25], which could significantly reduce
the attack surface.

C. Architecture of AC4AV

The proposed access control architecture for CAVs is as
shown in Figure 3, which consists of three components, Access
Control Engine, Action Control and Policy & Log Database.
The Access Control Engine authenticates operations and
responds yes or no to the Action Control component, which
performs as a hook to capture access actions. The Policy & Log
Database stores all data of AC4AV, such as the configuration
file and the access action record, in a hierarchical mode while
frequently used data is stored in the in-memory database with
high-speed access.

Fig. 3. The architecture of AC4AV.

Access Control Engine: In the Access Control Engine, we
introduce four major components: 1) access enforcement; 2)
context monitor; 3) data abstraction; and 4) engine API.

Since the goals of our access control system include dy-
namic access authentication, the context monitor component is
used to collect the system’s status information, such as CPU
utilization and GPS, enabling an access control policy with
dynamic features. For example, the A3 application would gain

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, AUGUST 2020 5

the access permissions of the historical video data with the
specific location and time ranges.

As discussed in Section II, real-time data are different from
historical data in terms of their access patterns, and different
data identifying methods are applied by different systems.
Thus, we designed the data abstraction component, which
provides the function of identity conversion. It converts the
identities of objects and subjects in captured tuples
from different data sources and the internal identities to each
other, based on a data abstraction method. Benefiting from
this component, third-party applications also could identify
their own data using an easy-to-read description method when
they implement customized access control policies. The data
abstraction method is introduced in Section IV.

To improve the expandability of our AC4AV, we designed
a component, named Engine API, with a series of APIs. The
provided functions are multi-fold: 1) to support a customized
policy, a series of APIs for customized policy configuration are
provided for applications to a submitted policy file. Moreover,
several implemented access control models are provided for
AC4AV so that applications could assign different access
control models to protect their data; 2) to support auditing,
a series of APIs are provided for inquiring records of access
actions, as well as results; and 3) to configure AC4AV, a series
of APIs are provided so that the system administrator could
configure all components in AC4AV. For example, we will
not limit the database used by Policy & Log Database, so the
system administrator could assign it in the configuration file
or adjust it through the provided APIs in runtime.

The last component of the Access Control Engine is the
access enforcement, which is a core component, just like
an assembler, combining other components to determine the
permission to access actions. While a subject intends
to access the object with the operation, all the re-
lated information of that access action, as shown in tuple
{subject,object,operation,extra}, will be cap-
tured and sent to this component. Then, it will send the
segment of the object to the data abstraction to figure out
the internal identification of the accessed data. Then, it will
authenticate this action using the specified policy, associated
with other factors, defined in the policy and collected by the
context monitor component. The output of this component in-
dicates whether the subject has corresponding permissions.

Action Control Service: To capture access action and
deny the action without permissions in different data sources,
e.g., message queue system and web-based service, the Action
Control service is proposed in our AC4AV, mainly implement-
ing two functions, action capturing and action responding.

The action capturing function is that implemented sub-
service captures all access actions and submits these actions
to the Access Control Engine with the format as the tuple
{subject,object,operation,extra}. The action re-
sponding refers to sub-service performing corresponding op-
erations (allowing or denying) based on the responses (yes or
no) from the Access Control Engine. Note that the ways for
allowing/denying operations will vary depending on the corre-
sponding access method. For instance, an NGINX module will
be implemented for capturing all data access queries to DDI

module in OpenVDAP, and it will reject all non-permission
queries with a 403 status code if it receives a no from the
Access Control Engine. Thus, the Action Control service will
consist of various sub-services when implemented.

Policy & Log Database: Vast access action records should
be recorded for future auditing, and many policy files should
be collected in AC4AV. Thus, a Policy & Log Database is
proposed to store this data. It is a two-layer architecture
consisting of two database systems.

The lower layer database is a disk database, and it stores all
information of AC4AV, including access action records, policy
files, configuration files, and so on. However, the disk database
is with a high query latency, and typically, one access control
operation requires a quick response. An in-memory database
is proposed as the upper layer database to reduce the inquiring
latencies of these frequently used policies. Once the AC4AV
starts, the Access Control Engine will inquire those policies
from the disk database and then store the parsed policies to the
in-memory database. We should note that all the stored data
is only allowed to be accessed by the Access Control Engine.
The reason is that stored data, i.e., access action records, policy
files, configurations of AC4AV, is important, especially when
auditing in an accident investigation.

IV. IMPLEMENTATION

In this section, we introduce the implementation of our
AC4AV prototype. First, we introduce the data abstraction
method. Second, the prototype implementation of AC4AV is
illustrated, followed by three access control models which are
implemented as built-in models in the engine API component.

A. Data Abstraction Method

The naming of objects from different data sources are
different; thus, how to identify subject and object is
a problem that must be solved in an access control frame-
work. To this end, an easy-to-read data abstraction method
is proposed when implementing the prototype of our AC4AV,
which converts the identities of objects and subjects in
the captured tuples from different data sources and internal
identities to each other.

Object: Different data sources have their own methods to
identify data. The following equation is an example identity
on the Pub/Sub system for the installed front camera, which
publishes video data for applications. Thus, one application
could obtain real-time video by subscripting such topic.

camera.id1.channel 720P (2)

In addition, historical data could be accessed through the
web-based service. Taking the historical video data of the
foregoing camera as an example, one application could request
that data with a specific time period (e.g., t1 to t2) from the
DDI service. The access URL is as listed in equation 3. Note
that we omitted “http://” in the equation due to limited
space. In this case, the identity of the historical data is different
from the real-time data, shown in Eq. 2.

ddi/camera?type = id1&start = t1&end = t2 (3)

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, AUGUST 2020 6

To uniformly identify the data in our AC4AV, we leveraged
Uniform Resource Identifier (URI), which is a hierarchical
method. Typically, the object can be described in three
parts: owner, identifier, and parameters. The identities listed
in Eq. 2 and Eq. 3 can be respectively described as following
based on our method.

/sys/camera/front/realtime?resolution = 720 (4)
/sys/camera/front/history?start = t1&end = t2 (5)

Here, /sys indicates the owner, the identifier of data is
camera/front/realtime, and resolution=720 as-
signs the resolution of the subscribed video stream, while
a real-time video source might publish several streams to
the system with different resolutions. Similarly, the histor-
ical data sensed by the same sensor can be identified by
replacing realtime with history and setting some pa-
rameters, such as start and end timestamps. Based on this
method, the object can be uniformly identified in the data
abstraction component, regardless of the object in the
publish/subscribe system or in the DDI service.

Subject: In addition, we also use this method to iden-
tify subjects (applications). For example, the application
A3 [19] could be defined as /com/qyzhang/A3?v=1.0,
while com/qyzhang is the owner and A3 is the identi-
fier. Moreover, a group label can be defined to identify a
set of applications thus providing a simpler way to man-
age applications in an access control policy. For example,
group:autonomous-services is used to refer all ser-
vices related to autonomous driving. Note that this group label
should be created as a system-level configuration through the
engine API component.

B. Implementation

We implement a prototype of AC4AV based on proposed
architecture. Most parts of the implemented prototype are
programmed using Golang language, except the Action Control
sub-service on NGINX and the attribute-based encryption
(ABE) algorithm, which is implemented using C/C++ lan-
guage. In addition, we have tested our prototype on two
different platforms. One is a normal desktop with the Intel
CPU, and another is our HydraOne platform [18] with the
NVIDIA Jetson TX2 processor, which is an indoor experi-
mental research and education platform for CAVs based on
OpenVDAP architecture [6].

Action Control. The Action Control service consists of
various sub-services, implemented to capture all access actions
from different systems. In this prototype, we implement two
sub-services. One is embedded in a publish/subscribe system
for real-time data and another is embedded in a web server
for historical data, as shown in Fig. 4.

The chosen publish/subscribe system for our AC4AV proto-
type is NATS [26], which is a simple, high performance open
source messaging system that provides multi-language clients,
such as Python, Java, C, etc. When re-compiled NATS receives
a subscription request, the implemented module will capture
all information about this action and send this information to
the Access Control Engine for authentication. If the response is

Fig. 4. Implemented sub-services for the Action Control service.

no, it will reject this subscription action. In our prototype, the
identity of a subject is captured according to the socket’s
port used by the application once the application connects to
the NATS. The object is the subscribing or un-subscribing
topic. In addition, we also modify the protocols of NATS so
that the applications can attach extra information in PUB, SUB
and UNSUB protocols for authenticating under different access
control models.

Applications could inquire the structured data and metadata
of unstructured data from the DDI service, hosted on NGINX
[27] in our prototype, which is a popular and high-performance
tool to implement a web server. Benefiting from the ex-
pansibility of NGINX, we implemented a sub-service of the
Action Control service using the C++ language, registered to
NGX_HTTP_ACCESS_PHASE on NGINX. Similar to the sub-
service in the re-compiled NATS, the implemented NGINX
module will collect the access information from an HTTP
request received by NGINX to the DDI service. Then, the
information is sent to the Access Control Engine, and the
HTTP query is rejected with a 403 Forbidden HTTP status
code if the response is no.

Access Control Engine. For the Access Control Engine,
it is implemented as a RESTful web service. The principle
of the data abstraction component has been described in
the previous sub-section. We implemented this component
and provide internal functions for other components, i.e., ac-
cess enforcement component. Note that we use an external
storage system, i.e., Redis, to store mapping relationships
for identity conversion, in our prototype, which causes ex-
tra communications on inquiring identities. The reason is
to improve the scalability, considering the increase in the
number of mappings. For the context monitor component, it
periodically obtains and caches system running status from
underlying system interfaces, e.g., CPU utilization, as well
as some privacy information about vehicle status from the
modified NATS, such as GPS data. The engine API component
allows the system administrator to configure the access control
framewrok and third-party applications to update their config-
uration. Listing 1 illustrates the interfaces we implemented in
our prototype. The UpdateConfigure interface allows the
system administrator to update system’s parameter, and the
InquirePolicy interface allows the system administrator
or third-party application to obtain policies corresponding
to the data. Note that we allow the system administrator
to view all policies and the application to view its own
data’s policies. To support auditing, we also implemented the
InquireActionLogList interface for inquiring access
action records with a set of query conditions. In addition,
the remaining three interfaces allow for the management of

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, AUGUST 2020 7

/* Update configuration of access control system */
func (*EAPIs) UpdateConf(key string, value string) error
/* Search a policy */
func (*EAPIs) InquirePolicy(data string) (Policy,error)
/* Create a policy */
func (*EAPIs) CreatePolicy(config_json string) error
/* Update a policy */
func (*EAPIs) UpdatePolicy(config_json string) error
/* Delete a policy */
func (*EAPIs) DeletePolicy(config_json string) error
/* Inquire logs */
func (*EAPIs) InquireActionLogList(query string) string

Listing 1. Interfaces implemented in the prototype.

policies. Similarly, we only allow an application to manage
its own policies. Moreover, to reduce the attack surface, only
the necessary APIs are open to management. Furthermore,
some authentication approaches should be considered when
calling these APIs. For example, as mentioned before, a
hardware-assisted trusted execution environment could ensure
that application codes are not modified and provide local
attestation. Thus, secure channels between our AC4AV and
other applications may be established [28].

The access enforcement component implements the function
of the receiving access actions, authenticating permission
and responding to the access actions. To describe a policy,
JavaScript Object Notation (JSON) is used to represent the pol-
icy’s features, which is a lightweight data-interchange format.
Listing 2 shows an example policy. The parameter segment
is used to describe the data. Here, we assign three access
control models to data with different parameters of resolution,
while autonomous driving applications could access 4K video
data based on the defined access control model. Note that the
h264-encoded video is the output of the encoding_node
in Fig. 2 (camera.id1.hdvideo) and the raw one is the
output of the camera_node_1 (camera.id1.image),
while we assume camera_node_1 and encoding_node
are the system services for the camera 1. The access control
models will be introduced in the next sub-section. The limit
segment determines the limitations of data on the vehicle
status, i.e., CPU, memory, network. Moreover, we can move
the same parameter to the data segment, like the “fps=25”.
In addition, the data owner could authenticate access actions
on its own data, by setting type to “external” in the
access_model segment. Typically, the external component
must be implemented with an interface to accept the tuple
and can be used to achieve dynamic access control. Thus the
access enforcement component will forward the request to the
assigned external link defined in the service segment.

Policy & Log Database. We implemented this service
based on two types of databases. For the disk database,
MongoDB [29] is used to store all data, including policies,
access action records and configurations. Every access action
with the result and related parameters (such as used system
status) is recorded by the Access Control Engine and stored in
MongoDB. The used in-memory database in our prototype is
Redis [30], which is an open source database and provides key-
value storage. Redis will cache these frequently-used policies,
such as the policies of parts of real-time data and created by
running applications, and use the data segment in JSON files
as keys. Further, as mentioned above, the identity mapping

1{ "version": 1.0,
2 "data": "camera/front/realtime?fps=25",
3 "owner": "system",
4 "allow": [
5 { "operation": "read",
6 "parameters": {
7 "encode": "h264",
8 "width": 1920,
9 "height": 1080 },
10 "access_model": {
11 "type": "external",
12 "service": "https://localhost:9999/auth"}
13 },{ "operation": "read",
14 "parameters": {
15 "encode": "h264",
16 "width": 1280,
17 "height": 720 },
18 "limit": ["CPU":"max 0.5"],
19 "access_model": { "type": "ABAC"}
20 },{ "operation": "read",
21 "parameters": {
22 "encode": "raw",
23 "width": 3840,
24 "height": 2160 },
25 "access_model":{
26 "type": "ACCL",
27 "applications": ["group:autonomous"] }
28 }]
29}

Listing 2. An example of access control policy.

relationships are also cached in Redis, while those are also
persisted on the disk database.

C. Access Control Model

In this section, we illustrate several implemented access
control models used for different applied scenarios in this
paper: Access Control Capability List (ACCL) -based Discre-
tionary Access Control (DAC) model, Identity-Based Access
Control model (IBAC) and Attribute-Based Access Control
model. And the tuple captured by our AC4AV could be used
to develop an new access control model.

ACCL-based DAC model: An ACCL-based DAC model
restricts the access to the regulated objects through access
control capability lists, which define the set of subjects and
their operation permissions. Here the ACCL-based access
control model is a simple DAC model. The model applied
to 3840 × 2160 video data in Listing 2 is an example of
the ACCL-based DAC model. Once the access enforcement
component receives an access action with the object as-
signed to ACCL model, it checks whether the subject is
included in the list defined by the applications segment.
This model is appropriate for the scenario that has clearly
known all subjects who will access the data so that it could
list exhaustively in the policy.

Identity-based Access Control model: An IBAC model
restricts access to the regulated objects through the identity
of the subjects, which has several ways to implement. In
our prototype, we use a certificate-based approach. The data
requester (object) should obtain the certificate issued by the
data owner using a private key and attaching the certificate
when inquiring the data. Only the certificate is valid, the
subjects could access the data. This model is flexible
when the owner could make allowed objects be part of
the issued certificate. Thus, the applications developed by the

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, AUGUST 2020 8

same company with different application names could access
the data without multiple authorizations.

Attribute-Based Access Control model: In our prototype,
an ABAC model restricts access to the regulated objects
through encrypting the data of the subjects. Thus, the
data can be public for all applications but encrypted by
related attributes, defined in an access structure. Only the data
requesters, who have the related attributes, can decrypt the
data from ciphertexts. Once the access enforcement component
receives an access action assigned to the ABAC model, it
directly allows the request. Figure 5 illustrates an example
of an attribute-based access structure for real-time video
data captured by on-board cameras. It determines that the
one with the attribute of “law enforcement” or the attribute
of “autonomous driving applications” could access real-time
video data, as well as the one which has the attribute of “public
safety application” could access the data in a special time
range.

Fig. 5. An example of access structure.

V. PERFORMANCE EVALUATION

In this section, we first evaluate the response time of access
actions, in terms of the topic subscription on NATS and
HTTP query forwarded by NGINX. Next, we evaluate the
performance of permission updating and revoking, i.e., the
effective time interval of the policy going into effect.

A. Experimental Setup

We simplify the environment and assume there are five types
of entities, as illustrated in Figure 6, including data requester,
data owner, message queue system, web service and AC4AV.
To evaluate the performance of our AC4AV as well as the
impacts of different access control models, we set up four
cases based on three access control models: 1) ACCL, 2)
Local-Cert, 3) Remote-Cert, and 4) ABAC. In Local-Cert case,
the certificate verifying is performed in Access Control
Engine, and the Remote-Cert case uses a third-party ap-
plication to verfity certificates. In addition, the ACCL and
ABAC cases have similar processes in Access Control
Engine. In ACCL case, it will check whether the requester is
defined in list and the ABAC case will allow all access actions.
When evaluating the performances, four vision-based ADAS
algorithms are running to simulate background workloads [31].

The computing unit used in the experiment is with an
Intel Core i5-7400 Processor @ 3.0 GHz (in performance

Fig. 6. The implementation of our experiment.

mode). We evaluate the performance of our AC4AV with
concurrent users, where each user sends one query per second
and the duration time is set to 10 seconds. The number of
users is ranged from 50 to 1000. The reason of maximum
of users with 1000 is that it is probably higher than the
number of expected installed applications in one CAV and is
enough to perfrom a stress test. Additionally, the application
keeps HTTP connections alive and reconnect, automatically,
which enables the connection reuse to avoid establish new
connection with latency. We should note that all connections
are within the CAV, and also work well even the Internet is
disconnected. The symmetric cryptography used to encrypt
and decrypt is Advanced Encryption Standard (AES) with
128-bit security level. The certificate is formatted as X.509
including the elliptic curve (ECC)-based public key (P-256
curve, the default in Golang). It is noted that some lightweight
cryptographic algorithms [32, 33] could reduce the latency,
including certificate and attribute verifying, with the same
security level, and we only evaluate our AC4AV with some
open-source algorithms and standard algorithms.

B. Performance
First, we evaluated the performances of our AC4AV. The

baseline here is the scenario without an access control technol-
ogy. And we counted the extra latency, in terms of certificate
verifying, Redis querying, communication (including queueing
time), and other remaining time (as processing latency).

1) Response Time of Access Action: Figure 7 illustrates
the latencies of access actions on the NATS with different
access control models. The ACCL and ABAC cases have
almost the same response time, thus we merge them in one
bar, and they have lowest response time. The Remote-Cert
case has the highest response time since it has additional
communications between the AC4AV engine and third-party
authority. The results show that our AC4AV framework could
handle the authentication on data access actions in real time,
and the latencies are decreased as the increasing of concurrent
data requesters. It is because that the part of threads awakening
is saved. In our experiments, an ECC-based certificate verifica-
tion takes from 108 µs (with 1000 requesters) to 130 µs (with
50 requesters). The Redis time here includes data abstraction
operation and policy querying cost, and takes 210 µs and 100
µs, respectively for 100 and 1000 requesters.

Figure 8 illustrates the performance of responding to access
actions captured by Nginx. Similar to the response time of

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, AUGUST 2020 9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ba
se

lin
e

A
C

C
L

/A
BA

C
C

er
t

R
em

ot
eC

er
t

Ba
se

lin
e

A
C

C
L

/A
BA

C
C

er
t

R
em

ot
eC

er
t

Ba
se

lin
e

A
C

C
L

/A
BA

C
C

er
t

R
em

ot
eC

er
t

Ba
se

lin
e

A
C

C
L

/A
BA

C
C

er
t

R
em

ot
eC

er
t

50 users 100 users 500 users 1000 users

L
at

en
cy

 (m
s)

Baseline latency Extra processing Extra Redis
Extra transmission Cert. verifying

Fig. 7. Access action response time for real-time data with different access
control models.

actions captured by the message queue system, the ACCL
and ABAC cases have the lowest response time. However,
when the number of concurrent requesters reach to 500, the
Remote-Cert case cannot handle action authentication in real
time, and all cases are affected when the number is 1000. In
our experiments, the real processing time plus Redis querying
and certificate verification are low, but the thread is waiting
when a synchronous request is sent, which wastes system
resources and results in a long in-coming request queueing
time. In addition, such intensive access requests (i.e., 1000)
might be infrequent in CAVs. We should note, to be non-
inductive for a third-party application while inquiring data,
the sub-component of Nginx finds out the HTTP sender by
matching the incoming port with system information stored
in /proc. It costs up to 13 ms. Thus, a cache is built to
save searching time to several microseconds for these reused
HTTP clients, which use the same port to communicate with
the same host. In our experiment setting, all requesters use
reuse-enabled HTTP clients, thus the averaged processing time
is low in results.
Insight 1: Different access control models causes different
extra overhead with different security levels and an asynchro-
nization optimizing (i.e., using callback for communications)
should be considered to avoid request queueing.

2) Policy Updating and Revoking: In particular, when a
malicious third-party application is detected, its permissions
should be revoked as quickly as possible. The interval,
between the time of sending permission updating/revoking
request and entry-into-force time, is the key metric.

For permission updating, the data requester requests the
permission of one object from the data owner through the
API of Access Control Engine. For the ACCL case, the
Access Control Engine responds to the request directly in our
experiments. For other cases, it must notify the data owner
for further processing, i.e., generating certificate in certificate-
based models or generating/updating keys in the ABE case.
Figure 9 illustrates the performance of permission updating.
The ACCL and Cert cases have similar latency. The ABAC
case has a larger latency due to additional data transmission
time with third-party application and the generating of ABE
attribute keys also costs much time than other cases, resulting

0

0.5

1

1.5

2

2.5

3

Ba
se

lin
e

A
C

C
L

/A
BA

C
C

er
t

R
em

ot
eC

er
t

Ba
se

lin
e

A
C

C
L

/A
BA

C
C

er
t

R
em

ot
eC

er
t

Ba
se

lin
e

A
C

C
L

/A
BA

C
C

er
t

R
em

ot
eC

er
t

Ba
se

lin
e

A
C

C
L

/A
BA

C
C

er
t

R
em

ot
eC

er
t

50 users 100 users 500 users 1000 users

L
at

en
cy

 (m
s)

Baseline latency
Extra processing
Cert. verifying
Extra Redis
Extra transmission

146

85

84.5

145.5

Fig. 8. Access action response time for historical data with different access
control models.

in that the ABAC case cannot respond to concurrent requests
very well. Note that the generating time of attributes is posi-
tively related to the number of attributes. In our experiment,
it randomly generates up to 10 attributes for each requester.

0

0.5

1

1.5

2

 A
C

C
L

 C
er

t

 A
B

A
C

 A
C

C
L

 C
er

t

 A
B

A
C

 A
C

C
L

 C
er

t

 A
B

A
C

 A
C

C
L

 C
er

t

 A
B

A
C

50 users 100 users 500 users 1000 users

L
at

en
cy

 (m
s)

Processing Redis
Cert. generating Data transmission126.5

127

Fig. 9. Time for permission updating with different access control model.

For permission revoking, the processes of the ACCL and
Cert cases are the same, thus we only show the ACCL case
here. And for these real-time data, the engine should notify
the message queue system to un-subscribe that subscription, so
that the ending time is when the subscription is un-subscribed.
However, there exists an exception that the data owner only
needs to update the encryption key for data with a new
access structure or update part of attributes of applications
while applying an ABAC model to the data. In this case, the
time of generating a new encryption key is the ending time
for the ABAC case. Additionally, we also measure the time
consumption of generating attributes for applications.

The results of the ACCL case on permission revoking in
Figure 10(a) show that our AC4AV framework could perform
permission revoking in reaml time, even in a concurrent
environment. Figure 10(b) shows the results in the ABE case.
Here, we use the access structure in the form of a complete

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, AUGUST 2020 10

0

0.1

0.2

0.3

0.4

0.5

0.6

50 users 100 users 500 users 1000 users

L
at

en
cy

 (m
s)

Processing Data transmission Redis

(a) ACCL model.

0

5

10

15

20

25

2 3 4 5 6

Ti
m

e
(m

s)

Layers

Key generation
Key decryption

(b) ABAC model.

Fig. 10. Time for permission revoking with different access control model.

binary tree. The results show that the latency increases as the
number of access structure layers increases. It means that per-
mission revoking is a time-consuming operation in an ABAC
model. Moreover, if a new access structure, which enables
un-revoked applications to decrypt the encryption key and
disable the revoked applications, cannot be constructed, the
data owner must update keys for all un-revoked applications,
which costs much time. Although the revocation operation
time is costly, the ABAC model still has obvious advantages
in data confidentiality and convenience, especially avoiding to
encrypt data for each data requesters.
Insight 2: The security and performance should be traded
off. The model with high computing latency leads to a poor
performance in high concurrency scenario, which should be
avoided.

C. Case Study: Video Analytics for CAVs

Finally, we use a video analytics application in CAVs as the
case studies to measure the impact on one data stream of our
AC4AV. The measured application is the Lane Detection. It is a
basic but essential component of ADAS system for CAVs [31],
which processes video data and detect lanes of road thus the
ADAS could make the vehicle stay inside the lane markings.
Hence, we measure the performance of real-time data when
applying our AC4AV with different access control models.

After subscribing to the live video, the application could
obtain the video stream from NATS. For ACCL case and Cert-
based cases, they have no difference in video data transmission
and processing, and they are the same with the case without
access control mechanism. Only the authentication at the
subscription stage is different, which was measured before,
thus we only show the results of the baseline (without access
control mechanism) and ABAC case. The difference between
these two cases is that the former one does not encrypt the
video data and the latter one encrypts the video data using
AES while the AES key is encrypted by the ABE algorithm.
We also measured the performance with two common video
formats, raw video data, and H264-encoded video data, while
both of them could be obtained from camera devices.

Here we select round 5-second experimental data as shown
in Figure 11. The raw video with AES encryption case has
the highest latency and the raw video without AES encryption
case has the lowest latency. It is because that the encrypting
and decrypting of raw video data cost much time (i.e., 50 ms).
Both of the H264-based cases have almost the same latencies.
In our case of video data, the transmitted data size of raw video

cases is about 140x larger than the H264-encoded cases. To
clearly show that, we also present the impacts of encrypting
and decrypting as shown in Figure 12.

9

18

36

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

L
at

en
cy

 (m
s)

Frame sequence

Raw-NonEnc Raw-Enc

H264-NonEnc H264-Enc

Fig. 11. Latency over time of a round 5-second real-time data.

0

0.5

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

L
at

en
cy

 (m
s)

Frame sequence

Raw H264
51.5

51

50.5

Fig. 12. Encrypting and decrypting impacts on latency over time of a round
5-second real-time data.

Figure 13 shows the detail time consumption on different
operations in our experiments, while the lane detection -related
operations are the same for all cases. Here the encryption
and decryption cause much time and thus it is suggested to
encode the video while encryption is applied. We should note
that we do not take video encoding time in count, since some
cameras could provide the H264-encoded video data, directly,
by utilized inside hardware encoder, which is more effective
than software-based encoding. The lane detection we used is a
traditional computer vision -based algorithm, which costs less
time than most deep learning based algorithms. For example,
we also evaluate the performance of Yolo3-tiny, which could
detect objects (e.g., obstacles) in video, and it costs around
one second for each frame.
Insight 3: The internal data transmission latency is low and
large volume data should be compressed before encrypted
transmission, unless the time of compression and decompres-
sion will be higher than encryption and decryption.

D. Summary

Typically, the fastest possible action by a human driver
takes 100-150 ms [34]. Faster action (i.e., within 100 ms) than

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, AUGUST 2020 11

0

1

2

3

4

5

6

7

8

Trans. Enc/Dec Trans. Enc/Dec Decode Lane Detection

Raw H264 Application

L
at

en
cy

 (m
s)

50
51

Fig. 13. Latency on different operations.

human drivers should be preformed by CAVs with better safety
[35]. In addition, similar industry standards are published by
Mobileye [36] and Udacity takes this timing requirement into
the design specifications. In this case, the latencies while
applying our framework and access control models should
also be limited to 100 ms. Based on the experiments, the
latencies incurred by our framework are tolerable for CAVs,
while most of the cases are less than 2 ms under a reasonable
concurrency, except the ABAC model case for video data.
Generally, it is unavoidable that more computation is required
to ensure the security of data. Thus, although it is a trade-off
problem, our framework could capture the access actions in
CAVs, enable different access control models to different data,
and has tolerable overhead.

VI. RELATED WORK

Connected and autonomous vehicle as an emerging research
direction has attracted a great deal of attention from industry
and academia. In this section, we discuss the related work in
the following primary areas: 1) CAV system and platform and
2) access control for CAVs.

CAV System and Platform: Currently, some CAVs are pub-
lished, such as Google Waymo, Denso Tesla, Baidu Apollo,
and PerceptIn DragonFly Pod. Traditional auto makers have
also released their CAV plans. General Motors has prepared
a car without a steering wheel or pedals, and is asking DOT
permission to deploy it on road [37]. BMW has been testing
CAV on public roads for several years. Most CAVs are usually
equipped with heterogeneous computing devices [2, 12, 38],
such as GPU-based Nvidia PX, DSP-based TDA from Texas
Instruments, FPGA-based Cyclone V of Altera, and ASIC-
based EyeQ5 from MobilEye, while Nvidia PX platform is
a leading GPU-based solution for CAVs. Building on these
heterogeneous computing devices, a real-time operating sys-
tem will be installed for these latency-sensitive autonomous
driving algorithms, e.g., QNS and VxWorks. Currently, most
existing autonomous driving systems and platforms utilize a
message passing architecture for communication. For example,
Apollo was built based on a modified version of the robot
operating system [39]. In addition, Wang et al. developed
an indoor experimental CAV platform, HydraOne [18], based
on the ROS, which is an implementation of OpenVDAP [6].

However, due to the limitation of ROS on performance, as well
as reliability and security issues, current ROS is not suitable
for the production deployment of CAVs unless automotive-
grade standards are met. Thus, some works are proposed.
Tang et al. proposed the PerceptIn Operating System for low-
speed CAVs, which is based on Nanomsg, a socket library
providing several common communication patterns, including
messaging. In addition, Baidu has established cooperation with
some traditional auto makers to build CAV products based on
its Apollo, which was developed based on the modified version
of ROS.

Access Control for CAVs: The access control technique has
been applied to many areas, such as cloud stroage [40], IoT
[41, 42, 43], smart health [44], as well as CAVs [45]. However,
the scheme proposed by [45] only deal with the access control
problem of data sharing between different CAVs. As far as we
know, there is not any research focusing the data sharing inside
CAV. As mentioned above, the current CAV system is a closed
system, which cannot support third-party applications, or can
only install these in the in-vehicle infotainment system, such
as Android Auto with limitation of accessing vehicle sensing
data. Thus, we mainly discuss access control on the ROS in
this section. The ROS is an open-source framework for robots,
including a collection of tools and libraries. Some works have
studied the security of ROS [46]. SROS is an official version
of ROS, including a set of security enhancements, such as
securing all socket transport within ROS and access control
mechanism [47, 48]. The provided access control model is
similar to our ACCL model, which only allows one topic
to be published/subscribed by special publishers/subscribers
defined in a policy file [13]. However, it cannot deal with
all access control requirements mentioned before. Similar to
ROS, most existing message queue systems only provide the
access control mechanism of the ACCL model. Ferraio et
al. [49] proposed a novel architecture and framework for
access control policy specification and enforcement, which is
a general access control architecture and could support several
access control models. However, deploying such access control
architecture into CAV requires much more research, such as
implementing access action monitors (i.e., sub-components of
our Action Control), and it is not easy to use without APIs. The
CAV has a certain similarity with the mobile phone to some
extent, such as personality. Android as a popular operating
system has provided an access control framework, and to
improve the flexibility, some works have been presented.
Shebaro et al. [14] implemented a context-based access control
systems for mobile devices, while the privileges of an Android
application could be granted or revoked based on the specific
context of the user, such as location. However, current mobile
operating systems cannot meet the requirements of CAVs, due
to the characteristics of CAVs on existing multiple access
patterns as mentioned before.

VII. CONCLUSION

In this paper, we investigated the characteristics of data
and access patterns, as well as the difficulties of designing
and implementing an access control framework in the CAV

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, AUGUST 2020 12

scenario. To tackle these problems, we designed and imple-
mented a three-layer access control framework to authenti-
cate access actions of real-time data and historical data on
different systems, which supports fine-grained and flexible
access control models and is extensible with several APIs,
enabling configuring access control policy to application and
implementing customized access control models. Then, we
implemented a prototype that could capture real-time data
access actions on the publish/subscribe system and historical
data access actions on the web service. In addition, three
access control models are implemented as built-in models,
and third-party developers could utilize those directly or apply
their own access control models through APIs. Finally, we
demonstrated our framework by evaluating the performances
in the cases of applying different access control models to
vehicle sensing data. The results show that our framework has
a tolerable impact on access actions.

The current version of our framework has low overhead
for access actions, and several improvements could be per-
formed in future studies to further reduce the latency. We will
design caching modules for different framework components.
For instance, frequently used policies and identity mapping
relationships could be cached in the Access Control Engine
component thus no Redis access is requested. Moreover, we
will try to analyze the requirements of access control models in
CAVs and design suitable access control models. Furthermore,
benefiting from the expandability of our AC4AV, we will
implement more Action Control sub-services to face changes
in future access patterns, e.g., sharing memory mode for real-
time data.

REFERENCES

[1] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and
W. Shi, “Edge computing for autonomous driving:
Opportunities and challenges,” Proceedings of the
IEEE, pp. 1–20, 2019. [Online]. Available: https:
//doi.org/10.1109/JPROC.2019.2915983

[2] J. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar,
and B. Litkouhi, “Towards a viable autonomous driving
research platform,” in 2013 IEEE Intelligent Vehicles
Symposium (IV), June 2013, pp. 763–770. [Online].
Available: https://doi.org/10.1109/IVS.2013.6629559

[3] M. Cebe, E. Erdin, K. Akkaya, H. Aksu, and S. Uluagac,
“Block4forensic: An integrated lightweight blockchain
framework for forensics applications of connected
vehicles,” IEEE Communications Magazine, vol. 56,
no. 10, pp. 50–57, OCTOBER 2018. [Online]. Available:
https://doi.org/10.1109/MCOM.2018.1800137

[4] Waymo. (2019) Waymo. https://waymo.com/. (Accessed
8 August 2019).

[5] Baidu Inc. (2017) Apollo: Autonomous driving solution.
https://apollo.auto/index.html. (Accessed 27 December

2017).
[6] Q. Zhang, Y. Wang, X. Zhang, L. Liu, X. Wu,

W. Shi, and H. Zhong, “Openvdap: An open vehicular
data analytics platform for cavs,” in 2018 IEEE 38th
International Conference on Distributed Computing

Systems (ICDCS), July 2018, pp. 1310–1320. [Online].
Available: https://doi.org/10.1109/ICDCS.2018.00131

[7] L. Liu, X. Zhang, M. Qiao, and W. Shi, “Safeshareride:
Edge-based attack detection in ridesharing services,”
in 2018 IEEE/ACM Symposium on Edge Computing
(SEC), 2018, pp. 17–29. [Online]. Available: https:
//doi.org/10.1109/SEC.2018.00009

[8] R. S. Sandhu and P. Samarati, “Access control: principle
and practice,” IEEE Communications Magazine, vol. 32,
no. 9, pp. 40–48, Sep. 1994. [Online]. Available:
https://doi.org/10.1109/35.312842

[9] F. Li, Z. Li, W. Han, T. Wu, L. Chen, Y. Guo,
and J. Chen, “Cyberspace-oriented access control: A
cyberspace characteristics-based model and its policies,”
IEEE Internet of Things Journal, vol. 6, no. 2,
pp. 1471–1483, April 2019. [Online]. Available:
https://doi.org/10.1109/JIOT.2018.2839065

[10] Q. Lyu, Y. Qi, X. Zhang, H. Liu, Q. Wang, and
N. Zheng, “Sbac: A secure blockchain-based access
control framework for information-centric networking,”
Journal of Network and Computer Applications, vol.
149, p. 102444, 2020. [Online]. Available: https:
//doi.org/10.1016/j.jnca.2019.102444

[11] C. Chen, A. Seff, A. Kornhauser, and J. Xiao,
“Deepdriving: Learning affordance for direct perception
in autonomous driving,” in The IEEE International
Conference on Computer Vision (ICCV), December
2015, pp. 2722–2730. [Online]. Available: https:
//doi.org/10.1109/ICCV.2015.312

[12] S. Liu, J. Tang, Z. Zhang, and J. Gaudiot, “Computer
architectures for autonomous driving,” Computer,
vol. 50, no. 8, pp. 18–25, 2017. [Online]. Available:
https://doi.org/10.1109/MC.2017.3001256

[13] R. White, H. I. Christensen, G. Caiazza, and A. Cortesi,
“Procedurally provisioned access control for robotic
systems,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Oct 2018,
pp. 1–9. [Online]. Available: https://doi.org/10.1109/IR
OS.2018.8594462

[14] B. Shebaro, O. Oluwatimi, and E. Bertino, “Context-
based access control systems for mobile devices,” IEEE
Transactions on Dependable and Secure Computing,
vol. 12, no. 2, pp. 150–163, March 2015. [Online].
Available: https://doi.org/10.1109/TDSC.2014.2320731

[15] R. Wang, A. M. Azab, W. Enck, N. Li, P. Ning,
X. Chen, W. Shen, and Y. Cheng, “Spoke: Scalable
knowledge collection and attack surface analysis of
access control policy for security enhanced android,” in
Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, ser. ASIA CCS
’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 612–624. [Online]. Available:
https://doi.org/10.1145/3052973.3052991

[16] S. Ravidas, A. Lekidis, F. Paci, and N. Zannone,
“Access control in internet-of-things: A survey,” Journal
of Network and Computer Applications, vol. 144,
pp. 79 – 101, 2019. [Online]. Available: https:
//doi.org/10.1016/j.jnca.2019.06.017

https://doi.org/10.1109/JPROC.2019.2915983
https://doi.org/10.1109/JPROC.2019.2915983
https://doi.org/10.1109/IVS.2013.6629559
https://doi.org/10.1109/MCOM.2018.1800137
https://waymo.com/
https://apollo.auto/index.html
https://doi.org/10.1109/ICDCS.2018.00131
https://doi.org/10.1109/SEC.2018.00009
https://doi.org/10.1109/SEC.2018.00009
https://doi.org/10.1109/35.312842
https://doi.org/10.1109/35.312842
https://doi.org/10.1109/JIOT.2018.2839065
https://doi.org/10.1109/JIOT.2018.2839065
https://doi.org/10.1016/j.jnca.2019.102444
https://doi.org/10.1016/j.jnca.2019.102444
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1109/MC.2017.3001256
https://doi.org/10.1109/MC.2017.3001256
https://doi.org/10.1109/IROS.2018.8594462
https://doi.org/10.1109/IROS.2018.8594462
https://doi.org/10.1109/TDSC.2014.2320731
https://doi.org/10.1145/3052973.3052991
https://doi.org/10.1145/3052973.3052991
https://doi.org/10.1016/j.jnca.2019.06.017
https://doi.org/10.1016/j.jnca.2019.06.017

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, AUGUST 2020 13

[17] S. Roy, A. K. Das, S. Chatterjee, N. Kumar,
S. Chattopadhyay, and J. J. P. C. Rodrigues, “Provably
secure fine-grained data access control over multiple
cloud servers in mobile cloud computing based
healthcare applications,” IEEE Transactions on Industrial
Informatics, vol. 15, no. 1, pp. 457–468, Jan 2019.
[Online]. Available: https://doi.org/10.1109/TII.2018.2
824815

[18] Y. Wang, L. Liu, X. Zhang, and W. Shi, “Hydraone:
An indoor experimental research and education platform
for cavs,” in 2nd USENIX Workshop on Hot Topics in
Edge Computing (HotEdge 19). Renton, WA: USENIX
Association, 2019. [Online]. Available: https://www.us
enix.org/conference/hotedge19/presentation/wang

[19] Q. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Distributed
collaborative execution on the edges and its application
to amber alerts,” IEEE Internet of Things Journal, vol. 5,
no. 5, pp. 3580–3593, Oct 2018. [Online]. Available:
https://doi.org/10.1109/JIOT.2018.2845898

[20] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view
3d object detection network for autonomous driving,”
in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017, pp. 6526–6534.
[Online]. Available: https://doi.org/10.1109/CVPR.201
7.691

[21] M. Amarasinghe, S. Kottegoda, A. L. Arachchi,
S. Muramudalige, H. M. N. D. Bandara, and A. Azeez,
“Cloud-based driver monitoring and vehicle diagnostic
with obd2 telematics,” in 2015 Fifteenth International
Conference on Advances in ICT for Emerging Regions
(ICTer), Aug 2015, pp. 243–249. [Online]. Available:
https://doi.org/10.1109/ICTER.2015.7377695

[22] B. Qi, L. Kang, and S. Banerjee, “A vehicle-
based edge computing platform for transit and human
mobility analytics,” in Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, San Jose
/ Silicon Valley, SEC 2017, CA, USA, October 12-
14, 2017, 2017, pp. 1:1–1:14. [Online]. Available:
http://doi.acm.org/10.1145/3132211.3134446

[23] L. Liu, X. Zhang, Q. Zhang, A. Weinert, Y. Wang, and
W. Shi, “Autovaps: An iot-enabled public safety service
on vehicles,” in Proceedings of the Fourth Workshop
on International Science of Smart City Operations and
Platforms Engineering, ser. SCOPE ’19. New York,
NY, USA: ACM, 2019, pp. 41–47. [Online]. Available:
http://doi.org/10.1145/3313237.3313303

[24] W. Ding, Z. Yan, and R. Deng, “Privacy-preserving
data processing with flexible access control,” IEEE
Transactions on Dependable and Secure Computing, pp.
1–1, 2017. [Online]. Available: https://doi.org/10.1109/
TDSC.2017.2786247

[25] S. Mofrad, F. Zhang, S. Lu, and W. Shi, “A
comparison study of intel sgx and amd memory
encryption technology,” in Proceedings of The Hardware
and Architectural Support for Security and Privacy
(HSAP’18), June 2018. [Online]. Available: https:
//doi.org/10.1145/3214292.3214301

[26] NATS, “Nats - open source messaging system,” https:

//nats.io/, 2019, (Accessed 25 September 2019).
[27] NGINX Inc, “Nginx | high performance load balancer,

web server, and reverse proxy,” https://www.nginx.com/,
2019, (Accessed 15 September 2019).

[28] P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. Freil-
ing, and I. Verbauwhede, “Hardware-based trusted com-
puting architectures for isolation and attestation,” IEEE
Transactions on Computers, vol. 67, no. 3, pp. 361–374,
March 2018.

[29] MongoDB, Inc, “The most popular database for modern
apps | mongodb,” https://www.mongodb.com/, 2019,
(Accessed 30 September 2019).

[30] Redis Labs. (2019) Redis. https://redis.io/. (Accessed 17
September 2019).

[31] M. Maestre, “Lane detection module using c++ and
opencv,” https://github.com/MichiMaestre/Lane-Detecti
on-for-Autonomous-Cars, 2019, (Accessed 02 October
2019).

[32] X. Yao, Z. Chen, and Y. Tian, “A lightweight
attribute-based encryption scheme for the internet
of things,” Future Generation Computer Systems,
vol. 49, pp. 104 – 112, 2015. [Online]. Available:
https://doi.org/10.1016/j.future.2014.10.010

[33] J. Zhang, J. Cui, H. Zhong, Z. Chen, and L. Liu, “Pa-crt:
Chinese remainder theorem based conditional privacy-
preserving authentication scheme in vehicular ad-hoc
networks,” IEEE Transactions on Dependable and
Secure Computing, pp. 1–1, 2019. [Online]. Available:
https://doi.org/10.1109/TDSC.2019.2904274

[34] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing
in the human visual system,” Nature, vol. 381, no.
6582, p. 520–522, Jun. 1996. [Online]. Available:
https://doi.org/10.1038/381520a0

[35] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E.
Haque, L. Tang, and J. Mars, “The architectural
implications of autonomous driving: Constraints and
acceleration,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for
Programming Languages and Operating Systems, ser.
ASPLOS ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 751–766. [Online].
Available: https://doi.org/10.1145/3173162.3173191

[36] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe,
multi-agent, reinforcement learning for autonomous
driving,” CoRR, vol. abs/1610.03295, 2016. [Online].
Available: http://arxiv.org/abs/1610.03295

[37] General Motors. (2018) Meet the cruise av: the first
production-ready car with no steering wheel or pedals.

http://media.gm.com/media/us/en/gm/home.detail.html
/content/Pages/news/us/en/2018/jan/0112-cruise-av.html.
(Accessed 25 January 2018).

[38] L. Wang, Q. Zhang, Y. Li, H. Zhong, and W. Shi,
“Mobileedge: Enhancing on-board vehicle computing
units using mobile edges for cavs,” in 2019 IEEE 25th
International Conference on Parallel and Distributed
Systems (ICPADS), 2019, pp. 470–479.

[39] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote,
J. Leibs, E. Berger, R. Wheeler, and A. Ng, “ROS: An

https://doi.org/10.1109/TII.2018.2824815
https://doi.org/10.1109/TII.2018.2824815
https://www.usenix.org/conference/hotedge19/presentation/wang
https://www.usenix.org/conference/hotedge19/presentation/wang
https://doi.org/10.1109/JIOT.2018.2845898
https://doi.org/10.1109/JIOT.2018.2845898
https://doi.org/10.1109/CVPR.2017.691
https://doi.org/10.1109/CVPR.2017.691
https://doi.org/10.1109/ICTER.2015.7377695
https://doi.org/10.1109/ICTER.2015.7377695
http://doi.acm.org/10.1145/3132211.3134446
http://doi.acm.org/10.1145/3132211.3134446
http://doi.org/10.1145/3313237.3313303
http://doi.org/10.1145/3313237.3313303
https://doi.org/10.1109/TDSC.2017.2786247
https://doi.org/10.1109/TDSC.2017.2786247
https://doi.org/10.1145/3214292.3214301
https://doi.org/10.1145/3214292.3214301
https://nats.io/
https://nats.io/
https://www.nginx.com/
https://www.mongodb.com/
https://redis.io/
https://github.com/MichiMaestre/Lane-Detection-for-Autonomous-Cars
https://github.com/MichiMaestre/Lane-Detection-for-Autonomous-Cars
https://doi.org/10.1016/j.future.2014.10.010
https://doi.org/10.1016/j.future.2014.10.010
https://doi.org/10.1109/TDSC.2019.2904274
https://doi.org/10.1109/TDSC.2019.2904274
https://doi.org/10.1038/381520a0
https://doi.org/10.1038/381520a0
https://doi.org/10.1145/3173162.3173191
http://arxiv.org/abs/1610.03295
http://media.gm.com/media/us/en/gm/home.detail.html/content/Pages/news/us/en/2018/jan/0112-cruise-av.html
http://media.gm.com/media/us/en/gm/home.detail.html/content/Pages/news/us/en/2018/jan/0112-cruise-av.html

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, AUGUST 2020 14

open-source Robot Operating System,” in ICRA work-
shop on open source software, vol. 3, no. 2, 2009, p. 5.

[40] S. Xiong, Q. Ni, L. Wang, and Q. Wang, “Sem-acsit:
Secure and efficient multi-authority access control for iot
cloud storage,” IEEE Internet of Things Journal, pp. 1–1,
2020.

[41] R. Schuster, V. Shmatikov, and E. Tromer, “Situational
access control in the internet of things,” in Proceedings
of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’18. New
York, NY, USA: ACM, 2018, pp. 1056–1073. [Online].
Available: http://doi.org/10.1145/3243734.3243817

[42] T. Khalid, M. A. K. Abbasi, M. Zuraiz, A. N. Khan,
M. Ali, R. W. Ahmad, J. J. Rodrigues, and M. Aslam,
“A survey on privacy and access control schemes in fog
computing,” International Journal of Communication
Systems, p. e4181, 2019, e4181 IJCS-19-0407.R1.
[Online]. Available: https://doi.org/10.1002/dac.4181

[43] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan,
“Smart contract-based access control for the internet
of things,” IEEE Internet of Things Journal, vol. 6,
no. 2, pp. 1594–1605, April 2019. [Online]. Available:
https://doi.org/10.1109/JIOT.2018.2847705

[44] Y. Zhang, D. Zheng, and R. H. Deng, “Security and
privacy in smart health: Efficient policy-hiding attribute-
based access control,” IEEE Internet of Things Journal,
vol. 5, no. 3, pp. 2130–2145, June 2018.

[45] M. A. Habib, M. Ahmad, S. Jabbar, S. Khalid,
J. Chaudhry, K. Saleem, J. J. C. Rodrigues, and M. S.
Khalil, “Security and privacy based access control model
for internet of connected vehicles,” Future Generation
Computer Systems, vol. 97, pp. 687 – 696, 2019.
[Online]. Available: https://doi.org/10.1016/j.future.201
9.02.029

[46] B. Dieber, B. Breiling, S. Taurer, S. Kacianka, S. Rass,
and P. Schartner, “Security for the robot operating
system,” Robot. Auton. Syst., vol. 98, no. C, pp.
192–203, Dec. 2017. [Online]. Available: https:
//doi.org/10.1016/j.robot.2017.09.017

[47] B. Breiling, B. Dieber, and P. Schartner, “Secure
communication for the robot operating system,” in
2017 Annual IEEE International Systems Conference
(SysCon), April 2017, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/SYSCON.2017.7934755

[48] R. White, H. I. Christensen, and M. Quigley, “SROS:
securing ROS over the wire, in the graph, and through
the kernel,” CoRR, vol. abs/1611.07060, 2016. [Online].
Available: http://arxiv.org/abs/1611.07060

[49] D. Ferraiolo, V. Atluri, and S. Gavrila, “The policy
machine: A novel architecture and framework for access
control policy specification and enforcement,” Journal
of Systems Architecture, vol. 57, no. 4, pp. 412 – 424,
2011. [Online]. Available: http://www.sciencedirect.co
m/science/article/pii/S1383762110000251

Qingyang Zhang received the B. Eng. degree
in computer science and technology from Anhui
University, China in 2014, where he is currently
pursuing the Ph.D. candidate. His research interest
includes edge computing, computer systems, and
security.

Hong Zhong was born in Anhui Province, China,
in 1965. She received her PhD degree in computer
science from University of Science and Technology
of China in 2005. She is currently a professor and
Ph.D. supervisor of the School of Computer Science
and Technology at Anhui University. Her research
interests include applied cryptography, IoT security,
vehicular ad hoc network, cloud computing security
and software-defined networking (SDN). She has
over 120 scientific publications in reputable journals
(e.g. IEEE Transactions on Dependable and Secure

Computing, IEEE Transactions on Information Forensics and Security, IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions on Ve-
hicular Technology, IEEE Transactions on Intelligent Transportation Systems,
IEEE Transactions on Network and Service Management, IEEE Transactions
on Big Data and IEEE Internet of Things Journal), academic books and
international conferences.

Jie Cui was born in Henan Province, China, in
1980. He received his Ph.D. degree in University
of Science and Technology of China in 2012. He
is currently a professor and Ph.D. supervisor of the
School of Computer Science and Technology at An-
hui University. His current research interests include
applied cryptography, IoT security, vehicular ad hoc
network, cloud computing security and software-
defined networking (SDN). He has over 100 sci-
entific publications in reputable journals (e.g. IEEE
Transactions on Dependable and Secure Computing,

IEEE Transactions on Information Forensics and Security, IEEE Transactions
on Vehicular Technology, IEEE Transactions on Intelligent Transportation
Systems, IEEE Transactions on Network and Service Management, IEEE
Transactions on Emerging Topics in Computing, IEEE Transactions on
Circuits and Systems and IEEE Internet of Things Journal), academic books
and international conferences.

Lingmei Ren received the Ph.D. degree from the
Department of Electronic and Information Engineer-
ing, Tongji University, in 2016. She was a Visiting
Scholar with Wayne State University, in 2012. She
is currently with the School of Computer Science,
Shenzhen Institute of Information Technology, Shen-
zhen, China. Her main research interests include
fall detection, human behavior recognition, wireless
health, and edge computing.

Weisong Shi is a Charles H. Gershenson Distin-
guished Faculty Fellow and a professor of Computer
Science at Wayne State University. His research in-
terests include Edge Computing, Computer Systems,
energy-efficiency, and wireless health. He received
his BS from Xidian University in 1995, and Ph.D.
from Chinese Academy of Sciences in 2000, both in
Computer Engineering. He is a recipient of National
Outstanding PhD dissertation award of China and
the NSF CAREER award. He is an IEEE Fellow
and ACM Distinguished Scientist.

http://doi.org/10.1145/3243734.3243817
https://doi.org/10.1002/dac.4181
https://doi.org/10.1109/JIOT.2018.2847705
https://doi.org/10.1109/JIOT.2018.2847705
https://doi.org/10.1016/j.future.2019.02.029
https://doi.org/10.1016/j.future.2019.02.029
https://doi.org/10.1016/j.robot.2017.09.017
https://doi.org/10.1016/j.robot.2017.09.017
https://doi.org/10.1109/SYSCON.2017.7934755
https://doi.org/10.1109/SYSCON.2017.7934755
http://arxiv.org/abs/1611.07060
http://www.sciencedirect.com/science/article/pii/S1383762110000251
http://www.sciencedirect.com/science/article/pii/S1383762110000251

	Introduction
	Problem Statement
	Data Access Pattern in CAV
	Access Control

	System Architecture
	Definition
	Security and Threat Model
	Architecture of AC4AV

	Implementation
	Data Abstraction Method
	Implementation
	Access Control Model

	Performance Evaluation
	Experimental Setup
	Performance
	Response Time of Access Action
	Policy Updating and Revoking

	Case Study: Video Analytics for CAVs
	Summary

	Related Work
	Conclusion
	Biographies
	Qingyang Zhang
	Hong Zhong
	Jie Cui
	Lingmei Ren
	Weisong Shi

