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Abstract. We have witnessed the inefficiency of traditional proxy caching due

to the rapid growth of uncacheable HTTP content, resulting from ever-increasing
dynamic Web services, cache busting technologies, and the emergency of various
HTTP-based applications. Although several approaches have been proposed for
caching fragment-based dynamic Web content, we believe that a general under-
standing of the characteristics of uncacheable HTTP content is of great impor-
tance to the future of HTTP-based content caching and delivery.

In this paper, we characterized the uncacheable HTTP traffic and found that (1)
compared with cacheable content, uncacheable content now dominates the whole
HTTP traffic (96.5%), and surprisingly, multimedia type content transferred by
P2P applications (35.5% ) and graphic type (jpeg and gif) content (17.3% ) are
top two in the uncacheable HTTP objects; (2) although dynamic content gen-
eration consumes longer server processing time, network latency dominates the
total user-perceived latency for dynamic Web content; (3) a considerable (50%)
portion of content has their TTL value equals to zero. Among these content, we
observed URL-alias contributes 20% of total number of responses; and (4) P2P
traffic is increasingly scattered among non-default tcp ports which is a big chal-
lenge for P2P content caching. Furthermore, several implications derived from
these observations are discussed as well as future directions for efficient content
caching and delivery of uncacheable content are proposed .

1 Introduction

Proxy caching and content delivery network (CDN) are two major means to improve
WWW performance. The efficiency of such performance-enhancing technologies de-
pends on the cacheable property of Web content. Traditional caching mechanism works
fine for static cacheable Web objects, but seems futile to the increasingly large por-
tion of today’s HTTP trafficthe uncacheable, probably dynamically generated HTTP
objects including dynamic generated and personalized Web content, and fast grow-
ing peer-to-peer file sharing traffic, which is not suitable for traditional proxy caching
due to its “fetch-at-most-once” behavior property [1]. To face the rapid growth trend
of uncacheable content in the HTTP traffic, HTTP content with uncacheable property
deserves further investigation and exploitation of their cacheable possibility.

Several caching methods have been proposed to deal with these uncacheable Web
objects. They could be broadly categorizedcaatent cachingand function caching
The success of these techniques depends on the understanding of the HTTP uncacheable
content, including content characteristics and access patterns. In this paper, we tried to



answer these following questions: Among the huge HTTP content delivered on the
Internet, what part are cacheable and what part are uncacheable? What are their char-
acteristics, especially for uncacheable content? Is there any difference among different
uncacheable HTTP content? Is there any cacheable possibility for these conventional
uncacheable content? How about the cacheability of personalized content? Is there
some relationship between uncacheable content and HTTP persistent connection? To
our best knowledge, this work is the first effort to characterize the uncacheable HTTP
content.

To answer these questions, we sniff and analyze all inbound and outbound HTTP
traffic on all possible TCP ports, at Wayne State University (WSU), a medium-sized ed-
ucational institution with 35,000 students, faculty and staff. Tpelumg?2] is used on
the campus gateway switch to sniff TCP packet. For the traffic reconstruction purpose,
we build WebTACT, an offline Web traffic analyzer application, to reconstruct the TCP
streams and the corresponding HTTP connections. By analyzing a one-day, tnace
observed the following: (1) uncacheable data have dominated the majority portion of
today’s HTTP traffic (96.5% of total transferred HTTP content), and surprisingly, mul-
timedia type content transferred by P2P applications (35.5% ) and graphic type (jpeg
and gif) content (17.3% ) are top two in the uncacheable HTTP objects; (2) compared
to cacheable content, uncacheable content consumes more server-processing time. But
due to network latency, the client-perceived response time tends to be close to that of
cacheable content; (3) on average, uncacheable content have an larger object size than
that of cacheable objects (13 K bytes vs. 7K bytes); (4) clients that accessing person-
alized content and servers that providing personalized content are more concentrated
than general clients and server groups, while the total online personalized content oc-
cupies only a smaller percentage (less than 10%), far below than previous observations
from [3,4]; (5) a considerable (50%) portion of HTTP content has their TTL values
equal to zero. Among these content, we observed URL-alias contributes 20% of total
requests; (6) P2P traffic is increasingly scattered among multiple ports (only 13% from
default ports for KazaA [5] traffic), which is a big challenge for deployment of P2P
traffic caching. Several implications could be derived based on above observations: (1)
a considerable portion of uncacheable HTTP content is cacheable; (2) domination of
network latency factor motivates the moving of functionality for uncacheable HTTP
content generation to the edge of network; (3) prefetching for personalized Web con-
tent is promising because of the concentrated popularity of clients and servers; (4) con-
vinced by the observed P2P request popularity, we believe that content-based caching
is significant to the ever-increasing P2P traffic; (5) exploiting URL-alias is a promising
direction to improve cacheability of uncacheable content.

The rest of this paper is organized as follows. The following section introduces con-
tent classification techniques for uncacheable content. Section 3 describes the method-
ology used in our study. Section 4 starts with a high level characteristics analysis, fol-
lowed by detail discussion of the cacheable and uncacheable content traffic patterns
and meaningful features. Several implications are discussed in Section 5. Finally, re-
lated work and summary are listed in Section 6 and Section 7 respectively.

! Later in Section 4 we will explain that why do we believe one day trace is enough for this
analysis.



2 Background

From the viewpoint of proxy caching, generally HTTP object could be broadly catego-
rized as uncacheable content or cacheable content. The cacheable HTTP objects refer
to those infrequently changed HTTP objects (also known as static HTTP content).

Based on the HTTP protocol specifications [6], the uncacheable HTTP content
could be further classified into seven uncacheable subtypes, depends on the following
criteria:

Subtype 1 - NonGet: If the HTTP method, appeared in the HTTP request header, is
not a GET method, then the corresponding HTTP object would be classified as
NonGet subtype;

Subtype 2 - DynGen: If the method iSGET, and the request URL contains keywords
(like “cgi”, “asp”, “=" and “?”, ...etc.), which implies the HTTP response object is
probably generated dynamically, then that object would be classifi@yaSen
subtype;

Subtype 3 - Pragma: In the cases that HTTP request/response header part contains
“Pragma: no cache” control information header, this object could be considered as
Pragma subtype;

Subtype 4 - CacheCtl : In the case that HTTP request/response “Cache Control”
header contains information indicating this is a dynamic, uncacheable HTTP ob-
ject, this HTTP object is classified &acheCtl subtype;

Subtype 5 - Personalized : If the HTTP request header contai@sokie or Au-
thorization related headers,or the HTTP response conggti€ookie header,
the corresponding HTTP content is definegassonalized subtype;

Subtype 6 - AbnormalStatus : If the return status code, from server, does not be-
long to 2XX or 3XX, we think the response object is not a cacheable response and
treat it as ofAbnormalStatus  subtype;

Subtype 7 - ZeroTTL : Except above six subtypes, we are also interested in the HTTP
objects whose TTL (time-to-live) value equals to zero. This sort of objects is clas-
sified asZeroTTL subtype (Detail TTL calculation algorithm are given out in
methodology section).

3 Methodology

In our studytcpdumpis used to collect TCP packets at the network entrance of WSU.
To capture all possible HTTP traffic, TCP packets on all ports are sniffed.

To extract the complete HTTP information, including both header and content, we
have developed WebTACT, aiebTraffic Analysis andCharacteriz& ool. WebTACT
consists of three steps, as shown in Figure 1. In theT£fR connection reconstruction
step, TCP sessions are reconstructed. Our algorithm is similar to that proposed in [7].
One TCP connection is identified by the first several TCP packets(SYN, SYN/ACK,
ACK), used in 3-way hand-shaking period. Followed TCP packets are determined to
belong this connection, based on their sourec/destionation IP address and port numbers
combination, and whether their captured time is within the 2MSL (Maximum Segment
Lifetime, we choose 60 seconds in our analysis) time interval after receiving the latest



packet from this connection. After the TCP connection is rebuilt, all TCP packets pay-
load are accumulated to rebuild the buffer content, irHi@P pair reconstructiostep.
Finally, in theHTTP pair data extractionstep, we extract the interesting information
from the corresponding HTTP headers, calculate the hash digest values@uakie

field and the HTTP object, for our analysis purpose. Our WebTACT analyzer is written
in C++ , running on Linux RedHat, kernel version 2.4.18. The sensitive information,
such as IP address, is anonymized and stored on isolated storage device.

The concept of “pair” is used in our characteristics analysis. A pair is an request/response
pair consists of one original HTTP request and one corresponding HTTP response. It
is not unusual to see multiple pairs along with one persistent connection, introduced
in HTTP 1.1 protocol [6]. In this situation, based on the assumption that the order of
multiple requests/response are matched perfectly [8], we consider each corresponding
HTTP request/response as an HTTP request/response pair and the whole TCP connec-
tion consists of a list of this HTTP request/response pair).
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Fig. 1. A diagram of data collection and reconstruction.

TTL (time-to-live) is defined as the difference between its freshness lifetime and its
age. The age of an object is the difference between current time and the time specified
by theDate header field. In our calculation, the age is always zero except for which
is specified by thége header. Our calculation of freshness time is based on the same
heuristic algorithm used in Squid Web cache [9].

4 Analysis Results

We collected one-day period (12:00 pm, Mar 18 -12:00pm Mar 19, 2003) HTTP traffic,
rebuilt and investigated the contained HTTP traffic. We believe that one-day trace is
enough for our analysis, because of the following reasons: (1) the diary-based access
pattern has been observed in several previous analysis [10]; (2) unlike previous efforts
which look at only HTTP header information, we are interested in both headers and the
real content, which will consume a lot of disk space. Analysis results and observations
are depicted in this section.

4.1 High Level Characteristics

Table 1 lists the high level statistics for both cacheable and uncacheable content. For
each content type, we detail them in different traffic directions. The inbound traffic
means the response objects are targeted to clients inside WSU campus, while the out-
bound traffic means that the response objects are targeted to clients outside WSU cam-
pus. The total distinct client number inside WSU campus is 9,053, and that outside
WSU is 93,250. The total server (host providing HTTP content) number inside WSU



is 1,930, and that outside WSU is 114,416. The ratio of inbound traffic vs. outbound
traffic is aboutd:3 , while the corresponding ratio in University of Washington's trace
is1:5 [11].

From Table 1, we can see that, the captured-reconstructed gross HTTP traffic (in-
clude HTTP headers and bodies) is around 126G bytes. For the total objects size (or
the total size of transferred HTTP response objects} uncacheable content outnum-
bers the cacheable content (77G Bytes vs. 2.8 G Bytes). The servers that providing
uncacheable content outnumber those providing cacheable content (116,149 vs. 7,518),
while the clients accessing dynamic content also largely outnumber the clients access-
ing cacheable content(101,971 vs. 14,674). These data exemplify that the uncacheable
content dominates today’'s HTTP traffic portion. Figure 2 gives out the top 15 un-
cacheable content types, in total bytes and request/response numbers, and in both traffic
directions. As shown in Figure 2(a), the majority of HTTP uncacheable traffic is multi-
media audio/video type. This is because that: (1) the huge volume of P2P (KaZaA) ap-
plication traffic focuses mainly on multimedia file exchange; (2) 99.6% KazaA HTTP
objects are categorized into uncached type by our analyzer.

The reason for the large percentage of “Unknown content type” in Figure 2(b) is
that a large number of responses (3,168,821, 35.7% of total 8,869,630 uncacheable re-
sponses) are with zero-size object, so that we have to classify their type as “Unknown
content type”. These zero-size object cases include large portion of responses with ab-
normal return status code, that®bnormalStatus  subtype.

Comparing our data with previous results in [4], we observe that an increase in the
uncacheable request/response for imagfe (andjpeg ) content type, and a decrease
in text (html andplain ) content type. The possible reason is widely acceptable of
cache busting technologies [8]. The multimedia type objedtet/x-msvideo ,
video/mpeg andaudio/mpeg ), which contribute to a large percentage of total
bytes and a small percentage of total number of responses, implies a larger average
size of these kinds of objects.

Type Cacheable Uncacheable

HTTP Traffic Direction Inbound Outbound Inbound Outbound

# of Servers 7,345 173 114,221 1928

# of Clients 7,007 7,667 9,050 92,921
Total Gross Traffic(byte$?,282,983,56[017,770,36869,497,564,14163,495,360,62

=

Total Object Size (bytes)2,010,062,55B865,105,66244,259,882,15(83,155,217,99
# of Requests | 309,616 73,662 6,742,014 2,234,888
Table 1.High-level statistics of HTTP traffic.

4.2 Detailed Characteristics of Uncacheable HTTP Content

After describing the breakdown of different uncacheable subtypes first in this section,

we in turn present the response time, object size distribution, popularity and access
pattern, P2P traffic, and other interesting features of uncacheable content as follows.
Due to space limitation, we present, in another technical report version of this paper,

the analysis results about time-relating access pattern and its implication.

2 Hereafter, all the traffic mentioned in this paper are referring to total objects size.



Uncacheable Content BreakdownFigure 3 shows the percentage breakdown for each

of the seven uncacheable subtypes, by their total object size and request/response num-
ber, and Table 2 lists the detail absolute numbers. The “mixed” type means the un-
cacheable subtype is a combination of this subtype and at least one other uncacheable
subtype, while the “pure” type means the request belongs to this subtype only, not com-
bined with other subtypes. From Figure 3, we found thafpdwsonalized objects
(subtype 5) consists of less than ten percent of all uncacheable content in terms of both
bytes and number of requests, not as large as previous observation [7]. We do not know
the exact reason for this low percentage of personalized HTTP objects.
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Fig. 2. Histogram of top uncacheable HTTP content type by traffic bytes and responses.

A distinguish portionZeroTTL (subtype 7), implies a promising probability of
caching performance improvement that we will give more detail analysis later.
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Fig. 3. Histogram of all 7 uncacheable subtypes in terms of object sizes and the number
of requests.

Subtype ZeroTTL  [AbnormalStatufPersonalizei CacheCtl Pragma DynGen NonGet

pure requests| 4,413,886 2,067,218 71,634 104,186 80,947 1,274,334 69,767

pure bytes  [61,009,017,4981,223,834,086576,377,0341,021,726,98(3,067,833,908%6,808,561,668289,161,948

mixed requests 0 574,645 92,989 402,960 232,048 476,420 80,710

mixed bytes | 0 365,421,902 |416,873,20]12,474,101,78B 875,652,699 2,956,389,265369,123,078
Table 2. Detail breakdown for all seven uncacheable subtypes.

Response Time and Breakdown for Uncacheable Contenfor further analysis, we
first want to know, whether the cacheability of objects affects their response time, on



both server side (processing time) and client side (latency). In our study, The time dif-
ference between the TCP packet containing the first byte of HTTP request and the TCP
packet containing the last byte of the corresponding HTTP response, is calculated as the
response time. The timestamps on these TCP packets were tagged when these packets
are collectedTcpdumpcould record the timestamp with microsecond level precision,
which is much more accurate than that got from conventional server or proxy logs.
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Fig. 4. CDF of response time for cacheable/uncacheable objects with different traffic
direction.

Figure 4 shows the cumulative distribution function (CDF) of response time for
cacheable/uncacheable objects, in both inbound and outbound directions. In this figure,
the x-axis represents the response time in ascending order, and the y-axis represents
the cumulative percentage of responses for the corresponding x-axis value. Because of
the sniffing point location of our study, we could assume that for the inbound traffic,
the response time is close to client-perceived latency, and for the outbound traffic, the
response time is close to server-processing time.

For the inbound HTTP traffic, the difference between the response time of un-
cacheable and cacheable objects is not so distinguish. This implies that the time dif-
ference caused by dynamic/static content generation has been blurred by the network
latency on their route.

For the outbound HTTP traffic, there is a difference between curves the response
time of uncacheable and cacheable content, this is probably caused by the time neces-
sary to dynamically generate the uncacheable content.

Figure 5 shows the CDFs of response time for the six subtypes uncacheable ob-
jects. Pure subtype data sources are applied to avoid interference from other subtypes.
From this figure we can see the response times for different dynamic type do not show
much difference, especially for inbound traffic. The large size P2P (KaZaA) objects,
which take longer time period to finsih the HTTP session and are categorized mainly in
Personalized andZeroTTL subtypes, only occupy a very small count percentage
and do not affect the CDF curve much.

Object Size Distribution Object size distribution is also an interesting topic of our

study, especially when HTTP objects are classified into two major classes: cacheable
and uncacheable. Figure 6 shows the CDF for object size distribution. For uncacheable
objects, a large portion (37%) of objects’size is zero, so we exclude these zero-size ob-



1.00

CcDF

0.90

080 —— NonGet

070 —=— DynGen
060 Pragma
050 CacheCtl 05

0.40 —*— Personalized 04

0.30 —e— AbnormalStatus 03

—e— AbnormalStatus

020 —— ZeroTTL 02

—+—ZeroTTL.

0.10

0

o
f‘
o886 ——7 et ==
000001 00001 0001 001 01 1 10 100 1000 10000 00001 0001 001 01 1 10 100 1000 10000 100000
Access Time (second) Access Time ( secon d)

(a) Inbound direction (b) Outbound direction

Fig. 5. CDF of response time for seven uncacheable subtypes objects in both directions.

jects in the data source of Figure 6. Intuitively, we believe that, on average, uncacheable
object size is smaller than cacheable size, but our analysis gives contrary result. For
cacheable and uncacheable objects, Figure 6 shows that 90% of cacheable objects
smaller than 14,860 bytes, while same percentage uncacheable objects are smaller than
18,694 bytes. The average size is 7K bytes (cacheable) vs. 13K bytes (uncacheable).

Amazingly, the largest HTTP object size we observed is 252 M bytes for uncacheable
object and 12M bytes for cacheable objects. These numbers are much smaller than that
appear in [11]. The possible reasons are: (1) our data collecting period is relatively short
(24 hours vs. 9 days data collecting period [11]); (2) the object size is calculated based
on the bytes on the wire, instead of the HTTP headers. As more and more applications
(e.g., KaZaA) adopt parallel downloading or other segment-based content delivery tech-
nigues, supported by the HTTP protocol, we believe the size of individual HTTP objects
will not be larger any more. So the real reconstructed (fragmented) objects reflecting
only a fraction of total size is a reasonable explanation.

Is Uncacheable Content Really UncacheableAlthough the object composition tech-
nigue, such as ESI [12], has been proposed, in this paper we are looking for URL-alias
derived cacheable possibility. There exist a large number of HTTP objects that do not
belong to the six uncacheable subtypes, but their calculated TTL value is zero, so we
classify them aZeroTTL subtype.

Figure 7 shows the CDF of ZeroTTL objects digest, based on the rank of the number
of repeatness of the same digest value, not on their URLSs. Totally, there are 4,413,886
objects belonging to ZeroTTL subtype. Among these, there are almost 21% (943,476)
are zero-size objects, that are excluded in the data source of Figure 7. In Figure 7, we
observe that many different URLs share the identical content digest. This is caused by
the phenomenon called “URL-alias” [13]. The figure shows that the 1st rank repeated
digest value repeats 16,918 times, the 100th repeats 971 times, and the 1000th repeats
167 times. The number of requests targeting the top 1000 (less than 0.1% of total dis-
tinct digest value) rank digest value count for 18% of total number of requests. This
observation reveals an opportunity for the future Web cache improvement if certain
protocol could be designed to deal with ZeroTTL objects based on their digest value,
rather than on their URLSs only.
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Popularity Analysis Client/Server Popularity  Figure 8 and 9 plot the client/server
popularity, when accessing/providing personalized content and general HTTP content.
We assume that the personalized Web content would be more client/server-specific,
than general content, due to its “personalized” property. And these figures do verify our
assumption.
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Fig. 8. Clients popularity for general content and personalized content.

Figure 8(a) shows that clients consuming personalized content are more concen-
trated than the general clients population. Top 1% of clients that accessing personalized
content bring about 20% of the total personalized content requests. However, unlike
previous observations [3, 4], we find that clients interested in personalized content only
occupy 2% of the total client population. In Figure 8(b), we plot the requests distri-
bution of the top 100 clients that access outside personalized Web content. The graph
reveals that some clients are much more likely to access personalized Web content.
These clients are some public-access computers, located at public area like student dor-
mitories, for students check updated personalized information like email or personal
account on e-commerce Web sites.

Figure 9(a) also shows that personalized content is provided by 1% of the total
servers, and servers providing personalized content are also more concentrated than
server providing general content. Top 1% of servers that provide personalized content
handle 85% of the requests for personalized content requests. In Figure 9(b) we plot
the request distribution of the top 100 servers. The graph shows the existence of the
“hot” personalized Web servers and the top 30 of the servers contribute 95% of the total
requests among the top 100 servers providing personalized content.
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Object Popularity  Due to the personalized property, personalized HTTP objects
might not be more concentrated than general objects. Figure 10 plots the object pop-
ularity for general content and personalized content, and verifies our assumption. It
also shows that personalized content only occupy less than 10% of the total number of
requests, as already shown in Figure 3 and Table 2.
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Fig. 10.HTTP objects popularity. tion in persistent connection.

Persistent Connection vs. Uncacheable HTTP Objectl our collected-reconstructed
HTTP data, there are totally 669,958 persistent connection sessions, consists of 3,411,741
HTTP request/response pairs. On average, a persistent session consists of 5.09 pairs.
We have supposed that the uncacheable content would have some distribution patterns
among multiple pairs within one persistent connection. One reasonable assumption is
that, for a persistent HTTP connection, maybe the first object is an uncacheable dynam-
ically generated page template, followed with embedded cacheable objects like graph-
ics. If such distribution pattern does exist, then in Figure 11, the height of the columns
cooresponding to pair 2, 3 and so on, should be match to that of pair 1. But we did
not observe that. From Figure 11, we also could conclude that most of the uncacheable
content does not appear in persistent connections.

Peer-to-Peer Traffic Analysis We reconstructed all http-based P2P traffic by captur-
ing all TCP traffic, instead of sniffing only some specific default ports (e.g., 1214 for
KaZaA, 6346 and 6347 for Gnutella, used by previous work [11]). Generally, as ob-



served earlier in this Section, P2P traffic contributes to a large portion of total HTTP
traffic.
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For Gnutella type P2P applications [14], we find several different Gnutella client
applications (e.gL.imeWire ,BearShare , Shareaza etc.) appearedin HTTP traf-
fic and aggregate their traffic into a whole Gnutella division. For KaZaA type data, we
calculate the traffic from only one client program: KaZaA client. The total HTTP object
size transferred by Gnutella applications is 1,110,383,667 bytes, while that by KaZzaA
application is 26,659,686,069 bytes. The total object size transferred by P2P applica-
tions occupies 33.8.5% of the total observed HTTP object size while the corresponding
percentage is over 75% in [11]'s work.

Excluding zero-size object, the average object size of P2P objects is 171K bytes,
while that of WWW(without P2P) objects is 13K bytes. On average, P2P object size
is one order of magnitude larger than that of WWW (without P2P) objects, while [11]
indicated that P2P object size is three order of magnitude larger than that of WWW
(without P2P) object size. We ascribe this to the partial content delivery mechanism
provided by HTTP 1.1 protocol [6].

Figure 12 shows that, with the evolution of P2P applications, P2P traffic ports are
more distributed than before. For example, only 13% of KaZaA traffic is through its
default port 1214. Figure 13 plots the CDF of P2P object size distribution. The CDF
curve consists of two parts. The first is 73% zero-size objects, that implies an abnormal
return status, or P2P protocol related content. This observation is similar to that in [11].
The second part shows nearly 27% objects with size larger than 1000 bytes. In this part,
there is a very concentrated part (vertical line in graph, occupying 5.4% of total objects),
which corresponds size around 64 K bytes. This phenomenon strongly implies a pre-
vailing partial object transmission happened in P2P application traffic, which applying
IP packet’s maximum packet total length.

5 Implications for Caching and Delivery of Uncacheable Content

The analysis of WSU HTTP traffic indicates both the need to improve delivery of un-
cacheable HTTP content, and the opportunity to cache the uncacheable Web content
and P2P traffic. We discuss these implications below:



— Need for efficient delivery of uncacheable contenThe growing popularity of
P2P applications and various dynamic and personalized content have resulted in un-
cacheable HTTP content becoming an important part of current-day HTTP traffic.
Our study has shown that 96.5% of HTTP traffic is uncacheable, including peer-to-
peer traffic. Unfortunately, traditional proxy caching and CDNs developed to im-
prove delivery static content do not yield the same benefits for these uncacheable
content. This situation will lead client-perceived latencies increased and lacking of
network bandwidth of various network applications. Some initial results on caching
of peer-to-peer traffic are provided in [1].

— Is uncacheable really uncacheableZlthough we observed most of HTTP traffic
was uncacheable content, but 38% of the uncacheable content whose subtype is
ZeroTTL has the repeatness based on their hash-based digest values, resulting from
the “URL-alias” phenomenon. The repeatness provides an opportunity for caching
if certain protocol could be designed based on the digest value. In addition to the
object composition technique, such as ESI [12], we believe a considerable part of
uncacheable content is cacheable.

— Need for migrating the dynamic generation functions to the network edg®©ur
results show that client-side perceived response time of uncacheable content is very
close to that of cacheable content, while the uncacheable content needs more server
processing time for its generation than cacheable content. The possible reason is
that the network latency has blurred the difference. This implies that the further
server-side effects will not perceived by the client-side, and one possible solution
is migrating those dynamic functions to the network edge. Our initial work on gen-
erating personalized emails at the network edges shows a significant performance
improvement [15].

— Prefetching for personalized contentClients that accessing personalized content
are more concentrated than general clients, like at library, student center and dormi-
tories, and servers that provide personalized-content also show same concentration.
Those show that personalized prefetching could be used at those organizations to
reduce the client perceived latency and network bandwidth equipment.

— Potential for P2P traffic caching The P2P traffic accounts for 33.8% objects bytes
of total HTTP traffic, and our analysis shows that KaZaA objects requests are highly
concentrated. The top 100 objects account for 55% objects requests. Most of them
are fragments and belong to tiRersonalized and ZeroTTL subtypes un-
cacheable content. As such, they could be cached by the content-based caching.
This will significantly reduce the bandwidth consumption of P2P applications, and
reduce the local traffic within the organization, in spite of the fact that individual
user will access the content only once [1]. However P2P traffic is increasingly scat-
tered among multiple ports (only 13% from default ports for KaZaA [5] traffic),
which is a challenge for real deployment of P2P traffic caching.

6 Related Work

Web workload characterization has been extensively studied in the past [8]. However,
many of these studies focus on the characteristics of static (cacheable) Web content,
while this work focuses on the characterization of uncacheable Web content. To the



best of our knowledge, the work presented in this paper is one of the first efforts that
attempting to understand the access patterns to uncacheable Web content in a general
context. The work presented in this paper compliments to previous work on understand-
ing the characteristics of dynamic and personalized Web content [16] and peer-to-peer
traffic [17, 1].

The methodology used in our analysis is very close to that of previous work [3, 18,
11, 4], however, the analysis emphasis on uncacheable Web content in this paper distin-
guishes our work from these previous work. For example, Wolman et al. analyzed the
Web traces of University of Washington [4], and Saroiu et al. analyzed the Web traces
of University of Washington four years later [11], both of them focus on the general
characteristics of HTTP traffic, especially on static Web pages. Although uncacheable
content are also discussed in [4], the work presented in this paper is more thoroughly.
Fu et al. focused their work on reconstructing HTTP request/response, logically group-
ing Web objects belonging into to one logic Web page together, virtually rebuilding the
Web page and monitoring Internet service performance at a server site [18]. Feldmann’s
work is a perfect online monitoring tool, but just as the works mentioned above, they
were all only interest in the HTTP protocol information appeared in HTTP header part.
Our work reconstructed the response Web objects and calculate the content digest based
on the rebuilt response objects and make use of object digest repeatness to investigate
possibility of reusing.

Kelly and Mogul [13]instrumented a non-caching, cache busting proxy to collect
response trace, and analyzed URL-alias based on response object digest. Our work
also based on the object digest, but emphasized on the cacheability of uncacheable
content. Leibowitz et al. [17] investigated P2P traffic at fixed destination port number,
and concluded that P2P traffic is highly repetitive and consequently responds well to
caching. Our work investigated all possible destination port number, and found that the
well-known port only took 13% of KaZaA traffic.

Although closest in spirit, the work by Brewington and Cybenko [19] and Douglis
et al. [20] on understanding the dynamics of the Web differs from our efforts in that only
uncacheable Web content are studied in our analysis, while the Web content analyzed
in their work has broader characteristics, with a large fraction actually corresponding to
static content.

7 Summary and Future Work

In this paper, we have collected and analyzed an one-day period HTTP traffic passing
over a medium-size educational institution, emphasized on the workload characteriza-
tion of uncacheable web content. Through our observation, we inferred four promising
directions to improve caching and content delivery: first, pushing the functionality of
uncacheable content generation to the network edges; second, applying the access pat-
tern feature to prefetching scheme; third, implementing an efficient content-based P2P
traffic caching; Finally combining digest-based approach into current cache to exploit
the prevailing URL-alias phenomenon. Our future work will focus on exploiting these
opportunities and integrating them into our ongoing CONCA project [21].
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